C++解题报告 : 迭代加深搜索之 ZOJ 1937 Addition Chains

Posted misakamkt

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C++解题报告 : 迭代加深搜索之 ZOJ 1937 Addition Chains相关的知识,希望对你有一定的参考价值。

技术图片
此题不难,主要思路便是IDDFS(迭代加深搜索),关键在于优化。
一个IDDFS的简单介绍,没有了解的同学可以看看:
https://www.cnblogs.com/MisakaMKT/articles/10767945.html
我们可以这么想,设当前规定长度为M,题目要求得出的数为N。
在搜索中,当前的步数为step,当前的数列为 数组a。
首先来确定思路,便是在以得出的数列a中枚举每两个数相加得出sum,然后继续搜索下一步。
初步的代码便是:

void iddfs(int x) {
    for(int i=1;i<=step;i++)
        for(int j=1;j<=step;j++) {
            a[step+1]=a[i]+a[j];
            iddfs(step+1);
        }
}

但是我们需要保证的数列应该是有序上升的,所以需要保证a[step+1]必须大于a[x]。

void iddfs(int x) {
    for(int i=1;i<=step;i++)
        for(int j=1;j<=step;j++) {
            a[step+1]=a[i]+a[j];
            if(a[step+1]>a[step]) continue;
            iddfs(step+1);
        }
}

但这样还不够,为了满足样例的需求,应该要从大到小来枚举加数。为了避免重复搜,还可以让j=i。

void iddfs(int x) {
    for(int i=step;i>=1;i--)
        for(int j=i;j>=1;j--) {
            a[step+1]=a[i]+a[j];
            if(a[step+1]>a[step]) continue;
            iddfs(step+1);
        }
}

现在可以发现可以简单的过样例了,但最后一个样例的时间却非常的长。所以我们应该要思考优化了。
可以发现序列的最后一个数最大都只能是\\(a_{step}*2^{M-step}\\)。为什么呢,因为要使最后结果最大,选的都必须是序列中最大的两个数,也就是最后一个数。结果算出来便就是\\(a_{step}*2^{M-step}\\)
那么我们的优化就很简单了,如果\\(a_{step}*2^{M-step}\\)是小于N的,那就根本不可能有解,就需要舍去。这便是这道题剪枝的思想。
最后的代码:

#include <iostream>
#include <cstring>
using namespace std;

#define N 200

int a[200],n,len,flag;

void dfs(int step) {
    if(step>len) return ;
    if(step==len && a[step]==n) {//找到了解,输出
        for(int i=1;i<=step;i++)
            printf("%d ",a[i]);
        puts("");
        flag=1;
        return ;
    }
    if(a[step]>=n) return ;
    for(int i=step;i>=1;i--)    
        for(int j=step;j>=i;j--) {
            if(a[i]+a[j]>a[step] && a[i]+a[j]<=n ) {
                a[step+1]=a[i]+a[j];
                int sum=a[i]+a[j]; 
                for(int k=step+2;k<=len;k++)
                    sum*=2;
                if(sum<n) continue;
                dfs(step+1);
                if(flag) return ;
            }
        }
}

int main() {
    while(cin>>n) {
        len=0;
        if( !n ) return 0; 
        memset(a,0,sizeof(0));
        a[1]=1;a[2]=2,a[3]=4;
        int m=1;
        while(m<n) {//这句加不加都无所谓,对时间复杂度影响不大
            m*=2;//len完全可以从1开始
            len++;
        } 
        for(len;;len++) {
            dfs(1);
            if(flag) break;
        }
        flag=0;
    }
}

include

include

using namespace std;

define N 200

int a[200],n,len,flag;

void dfs(int step) {
if(step>len) return ;
if(step==len && a[step]==n) {
for(int i=1;i<=step;i++)
printf("%d ",a[i]);
puts("");
flag=1;
return ;
}
if(a[step]>=n) return ;
for(int i=step;i>=1;i--)
for(int j=step;j>=i;j--) {
if(a[i]+a[j]>a[step] && a[i]+a[j]<=n ) {
a[step+1]=a[i]+a[j];
int sum=a[i]+a[j];
for(int k=step+2;k<=len;k++)
sum*=2;
if(sum<n) continue;
dfs(step+1);
if(flag) return ;
}
}
}

int main() {
while(cin>>n) {
len=0;
if( !n ) return 0;
memset(a,0,sizeof(0));
a[1]=1;a[2]=2,a[3]=4;
int m=1;
while(m<n) {
m*=2;
len++;
}
for(len;;len++) {
dfs(1);
if(flag) break;
}
flag=0;
}
}

以上是关于C++解题报告 : 迭代加深搜索之 ZOJ 1937 Addition Chains的主要内容,如果未能解决你的问题,请参考以下文章

ZOJ 1709(BFS_A题)解题报告

ZOJ Problem Set - 1025解题报告

UVa 1374 - Power Calculus——[迭代加深搜索快速幂]

zoj3707(Calculate Prime S)解题报告

uva 11212 - Editing a Book(迭代加深搜索 IDA*) 迭代加深搜索

解题报告力扣 第 278 场周赛