BZOJ-1076奖励关 概率与期望 + 状态压缩DP
Posted DaD3zZ
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BZOJ-1076奖励关 概率与期望 + 状态压缩DP相关的知识,希望对你有一定的参考价值。
1076: [SCOI2008]奖励关
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1602 Solved: 891
[Submit][Status][Discuss]
Description
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?
Input
第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。
Output
输出一个实数,保留六位小数,即在最优策略下平均情况的得分。
Sample Input
1 0
2 0
Sample Output
HINT
【数据规模】
1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。
Source
Solution
思路很好的一道题
一开始看到,打算用bool数组记录从属情况,看数据范围,感觉一眼状压,就开始搞
然而顺推并推不出来
后来明白,顺推产生的状态最后会极多,然后还无法判断最优的,所以不行
所以正解是倒推
f[i][j]表示第i个宝物,已选状态为j,那么最后结果就是f[1][0]
至于转移的过程,枚举每个物品,如果当前已选限制物品则$f[i][j]+=max(f[i+1][j],f[i+1][j|(1<<(l-1))]+p[l])$
否则$f[i][j]+=f[i+1][j]$
因为所求为期望,比较显然最后$f[i][j]/=n$
Code
#include<iostream> #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int read() { int x=0,f=1; char ch=getchar(); while (ch<‘0‘ || ch>‘9‘) {if (ch==‘-‘) f=-1; ch=getchar();} while (ch>=‘0‘ && ch<=‘9‘) {x=x*10+ch-‘0‘; ch=getchar();} return x*f; } int k,n,p[20]; int xz[(1<<16)+10]; double f[110][(1<<16)+10]; void dp() { for (int i=k; i>=1; i--) for (int j=0; j<=(1<<n)-1; j++) { for (int l=1; l<=n; l++) if ((xz[l]&j)==xz[l]) f[i][j]+=max(f[i+1][j],f[i+1][j|(1<<(l-1))]+p[l]); else f[i][j]+=f[i+1][j]; f[i][j]/=n; } } int main() { k=read(),n=read(); for (int i=1,x; i<=n; i++) {p[i]=read();x=read(); while (x!=0) xz[i]+=(1<<(x-1)),x=read();} dp(); printf("%.6lf\n",f[1][0]); return 0; }
以上是关于BZOJ-1076奖励关 概率与期望 + 状态压缩DP的主要内容,如果未能解决你的问题,请参考以下文章