高等数学(拉格朗日乘子法):NOI 2012 骑行川藏
Posted 既然选择了远方,便只顾风雨兼程
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了高等数学(拉格朗日乘子法):NOI 2012 骑行川藏相关的知识,希望对你有一定的参考价值。
[NOI2012] 骑行川藏
输入文件:bicycling.in
输出文件:bicycling.out
评测插件
时间限制:1 s
内存限制:128 MB
NOI2012 Day1
Description
蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨。川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行前设定好目的地、同时合理分配好自己的体力是一件非常重要的事情。
由于蛋蛋装备了一辆非常好的自行车,因此在骑行过程中可以认为他仅在克服风阻做功(不受自行车本身摩擦力以及自行车与地面的摩擦力影响)。某一天他打算骑
N段路,每一段内的路况可视为相同:对于第i段路,我们给出有关这段路况的3个参数 si , ki , vi‘ ,其中 si 表示这段路的长度,
ki 表示这段路的风阻系数, vi‘
表示这段路上的风速(表示在这段路上他遇到了顺风,反之则意味着他将受逆风影响)。若某一时刻在这段路上骑车速度为v,则他受到的风阻大小为 F =
ki ( v - vi‘ )^2(这样若在长度为s的路程内保持骑行速度v不变,则他消耗能量(做功)E = ki ( v - vi‘ )^2
s)。
设蛋蛋在这天开始时的体能值是 Eu ,请帮助他设计一种行车方案,使他在有限的体力内用最短的时间到达目的地。请告诉他最短的时间T是多少。
【评分方法】
本题没有部分分,你程序的输出只有和标准答案的差距不超过0.000001时,才能获得该测试点的满分,否则不得分。
【数据规模与约定】
对于10%的数据,N=1;
对于40%的数据,N<=2;
对于60%的数据,N<=100;
对于80%的数据,N<=1000;
对于所有数据,N <= 10000,0 <= Eu <= 108,0 < si <= 100000,0 < ki <= 1,-100 < vi‘ < 100。数据保证最终的答案不会超过105。
【提示】
必然存在一种最优的体力方案满足:蛋蛋在每段路上都采用匀速骑行的方式。
Input
第一行包含一个正整数N和一个实数Eu,分别表示路段的数量以及蛋蛋的体能值。 接下来N行分别描述N个路段,每行有3个实数 si , ki , vi‘ ,分别表示第 i 段路的长度,风阻系数以及风速。
Output
输出一个实数T,表示蛋蛋到达目的地消耗的最短时间,要求至少保留到小数点后6位。
Sample Input
3 10000
10000 10 5
20000 15 8
50000 5 6
Sample Output
【样例说明】 一种可能的方案是:蛋蛋在三段路上都采用匀速骑行的方式,其速度依次为5.12939919, 8.03515481, 6.17837967。
1 #include <iostream> 2 #include <cstring> 3 #include <cstdio> 4 using namespace std; 5 const int maxn=10010; 6 double s[maxn],k[maxn],v[maxn]; 7 double E,lam,x[maxn]; 8 int n; 9 int main(){ 10 #ifndef ONLINE_JUDGE 11 freopen("bicycling.in","r",stdin); 12 freopen("bicycling.out","w",stdout); 13 #endif 14 scanf("%d%lf",&n,&E); 15 for(int i=1;i<=n;i++){ 16 scanf("%lf%lf%lf",&s[i],&k[i],&v[i]); 17 if(s[i]==0.0)i-=1,n-=1; 18 } 19 double l=-1000.0,r=0.0,tot; 20 for(int t=1;t<=60;t++){ 21 lam=(l+r)/2.0;tot=0.0; 22 for(int i=1;i<=n;i++){ 23 double lo=max(v[i],0.0),hi=1e20; 24 for(int j=1;j<=120;j++){ 25 double X=(lo+hi)/2.0; 26 if(2*lam*k[i]*X*X*(X-v[i])+1>0) 27 lo=X; 28 else 29 hi=X; 30 } 31 x[i]=lo; 32 tot+=s[i]*k[i]*(x[i]-v[i])*(x[i]-v[i]); 33 } 34 if(tot>E) 35 r=lam; 36 else 37 l=lam; 38 } 39 double ans=0.0; 40 for(int i=1;i<=n;i++) 41 ans+=s[i]/x[i]; 42 printf("%.10lf\n",ans); 43 return 0; 44 }
以上是关于高等数学(拉格朗日乘子法):NOI 2012 骑行川藏的主要内容,如果未能解决你的问题,请参考以下文章
bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)