POJ 1236 Network of Schools(tarjan算法 + LCA)

Posted icode-xiaohu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 1236 Network of Schools(tarjan算法 + LCA)相关的知识,希望对你有一定的参考价值。

  这个题目网上有很多答案,代码也很像,不排除我的。大家的思路应该都是taijan求出割边,然后找两个点的LCA(最近公共祖先),这两个点和LCA以及其他点构成了一个环,我们判断这个环上的割边有几条,我们的答案就少几个。

  有人问,这个题重边怎么办呢,重边肯定不是桥啊。额……对于这个我只能说,这个题的原始图应该是没有重边的,后来加的边可能会有重边,不过不影响我们的判断,因为我们通过标记点的方式去判的。(这个题还是应该说明一下啊,题目有点问题……)。

  其次,这个题的好玩之处来了,网上人分享的代码,居然过不了一组很简单的样例(如下),(现在大多人可能已经修正了),其实这个原因我应该是找到了,那就是dfn(出生日期)和deep(深搜的层数)的使用错误,当你使用deep的时候交换两者的值是没错的,因为我们总能让他们调整到一层上,然后他们的LCA也一定在一层上了,使用fa数组可以追溯到他们的LCA。然而如果是用dfn交换两者的值就是错误的了,因为即使你调整了他们的值满足一定的大小关系,他们也不一定在一层上,很有可能追溯到了环的外面,所以在追溯的时候很可能会多减上几条边。也就是出现了下面的样例,答案是1,有人输出了0;

  其实这个地方我一直有一个疑惑,那就是使用dfn判断的时候,最后的时候居然会出现二者不相等的情况,这与深搜的性质相违背,到现在也没找到一个样例可以说明他是正确的,我确实感觉到当判断完前两个循环的时候dfn【u】就是他们的LCA了,这个疑惑我先放到这里,便于以后解答,在以后我会主要选择记录深度的方法去做,比较好理解,比较保险(就如我下面代码里的方法)

  附:这个题还有一个解决方法,就是求双连通分量,通过判断两点是否在一个分量里判断两点之间的边是否为桥,然后再合并这两个点。求连通分量的办法一种是并查集,在判断的时候合并到一个集合里,一种是栈的储存方式,id数组,与有向图求强连通分量的方法一致。注意无向图的双连通分量不是指能否相互到达,而是指这个分量里面不含桥,所以当两个点不在一个集合中的时候,这条边一定就是桥。

6 5
1 2
2 3
2 4
3 5
4 6
1
5 6

答案:1

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define maxn 100010
int head[maxn],dfn[maxn],low[maxn],fa[maxn],deep[maxn];
int all,tot,bridge[maxn],brinum;
struct Edge
{
    int to,nxt;
} edge[4*maxn];
void addadge(int a,int b)
{
    edge[tot].to = b;
    edge[tot].nxt = head[a];
    head[a] = tot++;
}
void dfs(int u,int pa)
{
    low[u] = dfn[u] = ++all;
    deep[u] = deep[pa] + 1;
    for(int i = head[u]; i != -1; i = edge[i].nxt)
    {
        int v = edge[i].to;
        if(!dfn[v])
        {
            fa[v] = u;
            dfs(v,u);
            low[u] = min(low[u],low[v]);
            if(low[v] > dfn[u])
            {
                bridge[v] = 1;
                brinum++;
            }
        }
        else if(v != pa) low[u] = min(low[u],dfn[v]);
    }
}
void lca(int a,int b)
{
    while(deep[a] > deep[b])
    {
        if(bridge[a])
        {
            bridge[a] = 0;
            brinum--;
        }
        a = fa[a];
    }
    while(deep[b] > deep[a])
    {
        if(bridge[b])
        {
            bridge[b] = 0;
            brinum--;
        }
        b = fa[b];
    }
    while(a != b)
    {
        if(bridge[a])
        {
            bridge[a] = 0;
            brinum--;
        }
        if(bridge[b])
        {
            bridge[b] = 0;
            brinum--;
        }
        a = fa[a];
        b = fa[b];
    }
}
int main()
{
    int n,m,q,a,b,ca = 0;
    while(~scanf("%d%d",&n,&m))
    {
        if(!n && !m) break;
        for(int i = 0; i <= n; i++)
        {
            head[i] = -1;
            dfn[i] = 0;
            low[i] = 0;
            fa[i] = i;
            deep[i] = 0;
            bridge[i] = 0;
        }
        tot = 0;
        all = 0;
        brinum = 0;
        for(int i = 0; i < m; i++)
        {
            scanf("%d%d",&a,&b);
            addadge(a,b);
            addadge(b,a);
        }
        dfs(1,1);
        scanf("%d",&q);
        printf("Case %d:\n",++ca);
        while(q--)
        {
            scanf("%d%d",&a,&b);
            lca(a,b);
            printf("%d\n",brinum);
        }
        puts("");
    }
    return 0;
}

 

以上是关于POJ 1236 Network of Schools(tarjan算法 + LCA)的主要内容,如果未能解决你的问题,请参考以下文章

poj1236Network of Schools Tarjan裸题

[POJ1236]Network of Schools(并查集+floyd,伪强连通分量)

POJ1236Network of Schools(强连通分量 + 缩点)

POJ 1236 Network of Schools —— (缩点的应用)

POJ 1236 Network of Schools(tarjan算法 + LCA)

poj1236 Network of Schools Tarjian算法