1282 - Leading and Trailing ---LightOj1282(快速幂 + 数学)
Posted 啦咯
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1282 - Leading and Trailing ---LightOj1282(快速幂 + 数学)相关的知识,希望对你有一定的参考价值。
http://lightoj.com/volume_showproblem.php?problem=1282
题目大意: 求n的k次方的前三位和后三位数然后输出
后三位是用快速幂做的,我刚开始还是不会快速幂,后来慢慢理解了。
前三位求得比较厉害
我们可以吧n^k = a.bc * 10.0^m;
k*log10(n) = log10(a.bc) + m;
m为k * lg(n)的整数部分,lg(a.bc)为k * lg(n)的小数部分;
x = log10(a.bc) = k*log10(n) - m = k*log10(n) - (int)k*log10(n);
x = pow(10.0, x);
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<algorithm> #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h> #include<algorithm> #include<iostream> #include<vector> #include<queue> using namespace std; typedef long long int LL; #define N 1001000 #define ESP 1e-8 #define INF 0x3f3f3f3f #define memset(a,b) memset(a,b,sizeof(a)) int Pow(int a, int b, int c) { if(b == 0) return 1; LL t = Pow(a, b>>1, c); t = t*t%c; if(b%2 == 1) t = t*a%c; return t; }///快速幂 int main() { int T, t=1; scanf("%d", &T); while(T --) { int n, k; scanf("%d %d", &n, &k); double m = k*log10(n) - (LL)(k*log10(n)); m = pow(10.0, m); int ans = Pow(n, k, 1000); printf("Case %d: %d %03d\n", t++, (int)(m*100), ans); } return 0; }
以上是关于1282 - Leading and Trailing ---LightOj1282(快速幂 + 数学)的主要内容,如果未能解决你的问题,请参考以下文章
1282 - Leading and Trailing 求n^k的前三位和后三位。
LightOJ 1282 Leading and Trailing (数学)
LightOJ - 1282 Leading and Trailing
LightOJ - 1282 -Leading and Trailing