LightOJ 1282 Leading and Trailing (数学)
Posted dwtfukgv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LightOJ 1282 Leading and Trailing (数学)相关的知识,希望对你有一定的参考价值。
题意:求 n^k 的前三位和后三位。
析:后三位,很简单就是快速幂,然后取模1000,注意要补0不全的话,对于前三位,先取10的对数,然后整数部分就是10000....,不用要,只要小数部分就好,然后取前三位。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1000 + 10; const int mod = 1000; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int fast_pow(int a, int n){ int res = 1; a %= mod; while(n){ if(n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %d", &n, &m); double x = m * log10(n) - (int)(m * log10(n)); int ans1 = (int)(pow(10, x) * 100); int ans2 = fast_pow(n, m); printf("Case %d: %d %03d\n", kase, ans1, ans2); } return 0; }
以上是关于LightOJ 1282 Leading and Trailing (数学)的主要内容,如果未能解决你的问题,请参考以下文章
LightOJ - 1282 Leading and Trailing
LightOJ - 1282 -Leading and Trailing
LightOJ 1282 Leading and Trailing (数学)
快速幂 E - Leading and Trailing LightOJ - 1282