CF1326C Permutation Partitions 题解,

Posted bifanwen

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CF1326C Permutation Partitions 题解,相关的知识,希望对你有一定的参考价值。

原题链接

简要题意:

给定一个 (1) ~ (n) 的置换,将数组分为 (k) 个区间,使得每个区间的最大值之和最大。求这个值,和分区的方案数。

关键在于 (1) ~ (n) 的置换。

显然,你只要把从 (n - k + 1)(n) 这一段,每个区间分一个(其余的随便分)。

显然可以得出第一个答案:

[(n-k+1) + (n-k+1) + cdots + (n-1) + n ]

(很显然,你可以用等差数列求和,可是没这个必要,一会儿求第二个答案的时候,可以顺便求啊

比方说:(以第三个样例为例)

7 3
2 7 3 1 5 4 6

这时你把 (5)(6)(7) 作为每个区间的最大值。

此时你会发现,比方说 (3 space 1) 这一段。

它要么全归 (7),全归 (5) ,或者分两段,左边归 (7),右边归 (5).

那么,你想,这就相当于你可以在任意的位置把它分段。(包括最左边和最右边,此时尽属一段)

那么,方案数是 (3).

就是 (5) 的位置减去 (7) 的位置,即 (5 - 2 = 3).

而一共三段,分别计算。根据 乘法原理 可得:

[1 imes 3 imes 2 = 6 ]

所以,第二个答案是:

每个 (geq n - k + 1) 的数和前面一个 (geq n - k + 1) 的数的位置之差的乘积。

第零个 (geq n - k + 1) 的数的位置,我们认为是 (0).

记得开 ( exttt{long long}).

十年OI一场空,不开long long见祖宗

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const ll MOD=998244353;

inline int read(){char ch=getchar();int f=1;while(ch<‘0‘ || ch>‘9‘) {if(ch==‘-‘) f=-f; ch=getchar();}
	int x=0;while(ch>=‘0‘ && ch<=‘9‘) x=(x<<3)+(x<<1)+ch-‘0‘,ch=getchar();return x*f;}

int n,k,last;
ll s=0,cnt=1;

int main(){
	n=read(),k=read();
	for(int i=1,t;i<=n;i++) {
		t=read(); if(t>n-k) {
			s+=t; if(!last) last=i; //维护上一个 >= n - k + 1 的数的位置
			else cnt=cnt*(i-last)%MOD,last=i; //计数
		} 
	} printf("%lld %lld
",s,cnt); 
	return 0;
}

以上是关于CF1326C Permutation Partitions 题解,的主要内容,如果未能解决你的问题,请参考以下文章

CF359B Permutation (构造)

CF1295E Permutation Separation

## CF1352G Special Permutation

CF1208D Restore Permutation

CF785CAnton and Permutation(分块 动态逆序对)

CF452F Permutation 题解