最近点对问题

Posted kkbeta

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最近点对问题相关的知识,希望对你有一定的参考价值。

问题描述:

二维平面上n个点,要求找出距离最近的两个点之间的距离。

 

解决流程:

将点对按照x坐标升序排列,x相同时按照y升序排列

从中间那个点pmid,将点集P分为P1和P2

递归P1和P2,找到它们中的最近点对的距离d1,d2,d=min(d1, d2)

判断P1和P2之间有没有更近的点对,可能的点对在[pmid.x-d, pmid.x+d]这个长条状区域内,记作PP(p possible)

技术图片

 对每一个p1∈P1∩PP,发现可能的p2都在分界线右侧d*2d的范围内。实际应该是(pmid.x, p1.y)为圆心,半径为d的半圆,不过取矩形或许是为了方便?

可以知道,右侧矩形范围中满足条件的p2不超过6个,由此可知,我们只需检验6*n/2次即可确,检验的复杂度为O(n)

(证明:

将矩形等分成6分,变成(d/2)*(2*d/3)的矩形

如果一个小矩形中包含2个可能的点,那么它们的距离必定小于这个矩形对角线的距离5d/6

又因为P2中的点的最小距离为必定大于等于d

所以一个小矩形不可能包含两个以上的点

因为是不断二分,所以算法复杂度为O(n*lgn)

 

 

 

以上是关于最近点对问题的主要内容,如果未能解决你的问题,请参考以下文章

平面最近点对问题

分治 -- 平面最近点对

平面最近点对

最近的点对算法

分治法-最近点对问题

平面内最近点对问题