深入理解TCP协议及其源代码

Posted hmyaa

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深入理解TCP协议及其源代码相关的知识,希望对你有一定的参考价值。

深入理解TCP协议及其源代码

实验环境:Linux-5.0.1 内核 32位系统的MenuOS

本次主要分析理解TCP三次握手,和跟踪三次握手的基本过程

技术图片

该TCP协议的状态转换图,完整的描述了TCP状态的变化:

从中可以清楚的了解到整个TCP状态转移的过程。总共有11个状态。

先说明下图中每个字段的含义:

  • LISTEN:服务器打开一个socket进行监听
  • SYN_SENT:当socket执行CONNECT连接时,客户端发送了SYN报文,并等待服务器发送三次握手中的第2个报文。SYN_SENT 状态表示客户端已发送SYN报文。
  • SYN_RCVD:表示接受到了SYN报到,该状态是SOCKET建立TCP的连接时的三次握手会话过程的一个中间状态,很短暂,基本上很难通过netstat观察到。
  • ESTABLISHED:表示客户端和服务器连接建立。
  • FIN_WAIT_1:该状态与FIN_WAIT_2状态都是表示等待对方的FIN报文。但是FIN_WAIT_1状态是ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即进入FIN_WAIT_1状态。而FIN_WAIT_2状态是服务器回应ACK报文进入的状态。
  • FIN_WAIT_2:是socket的半连接状态,也就是一方要求close连接,但另外自己还有数据要传送给对方。
  • TIME_WAIT:表示收到了FIN报文,并放松ACK报文,接着就等待2MSL后进入CLOSED可用状态。如果FIN_WAIT_1状态下,收到了FIN和ACK,那将直接进入TIME_WAIT状态,而无须经过FIN_WAIT_2状态。
  • CLOSING:这种比较特殊,实际情况很少出现,一方发送一一个FIN,同时另外一方也发送了一个FIN,而没有中间的ACK报文的发送。这种一般发生在双方同时关闭的情况下。
  • CLOSE_WAIT:等待关闭,表示对方close一个socket后放松FIN报文给自己,你发送一个ACK就进入了这个状态。如果你有数据发送那么就传送给对方,直到发送FIN给对方,进入关闭状态。所以在该状态下,需要完成的事情是等待你去关闭连接。
  • LAST_ACK:被动关闭的一方在发送FIN报文后,最后等待对方的ACK报文,当收到ACK报文,也就进入了CLOSED状态。
  • CLOSED:初始状态,也是结束状态。

前面第一次作业已经通过用netstat观察过TCP的状态的变化,现在通过源代码来理解协议的

/net/socket.c
SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
{
 // ...
  switch (call) {
    case SYS_SOCKET:
        err = __sys_socket(a0, a1, a[2]);
        break;
    case SYS_BIND:
        err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
        break;
    case SYS_CONNECT:
        err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
        break;
    case SYS_LISTEN:
        err = __sys_listen(a0, a1);
        break;
    case SYS_ACCEPT:
        err = __sys_accept4(a0, (struct sockaddr __user *)a1,
                    (int __user *)a[2], 0);
        break;
        //...
        }

这是上次分析到了,系统调用根据相应的标志,访问相应的系统调用。现在深入系统调用__sys_bind里面

int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)

    struct socket *sock;
    struct sockaddr_storage address;
    int err, fput_needed;

    sock = sockfd_lookup_light(fd, &err, &fput_needed);
    if (sock) {
        err = move_addr_to_kernel(umyaddr, addrlen, &address);
        if (!err) {
            err = security_socket_bind(sock,
                           (struct sockaddr *)&address,
                           addrlen);
            if (!err)
                err = sock->ops->bind(sock,   //******
                              (struct sockaddr *)
                              &address, addrlen);
        }
        fput_light(sock->file, fput_needed);
    }
    return err;
}

sock->ops->bind是执行相应功能的函数,类似的可以在__sys_connect中可以看到,sock->ops->connect,

sock是struct socket类型

struct socket {
    socket_state        state;
    short           type;
    unsigned long       flags;
    struct socket_wq    *wq;
    struct file     *file;
    struct sock     *sk;
    const struct proto_ops  *ops;
};

查看ops对用在tcp_ipv4中的数据结构

//tcp_ipv4.c
struct proto tcp_prot = {
    .name           = "TCP",
    .owner          = THIS_MODULE,
    .close          = tcp_close,
    .pre_connect        = tcp_v4_pre_connect,
    .connect        = tcp_v4_connect,
    .disconnect     = tcp_disconnect,
    .accept         = inet_csk_accept,
    .ioctl          = tcp_ioctl,
    .init           = tcp_v4_init_sock,
    .destroy        = tcp_v4_destroy_sock,
//...
};

tcp_ipv4中对数据进行了初始化,connect和accept分别对应的是tcp_v4_connect和inet_csk_accept,tcp中的conncet也是三次握手动作中的关键步骤,

int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
{
    struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
    struct inet_sock *inet = inet_sk(sk);
    struct tcp_sock *tp = tcp_sk(sk);
    __be16 orig_sport, orig_dport;
    __be32 daddr, nexthop;
    struct flowi4 *fl4;
    struct rtable *rt;
    int err;
    struct ip_options_rcu *inet_opt;
    struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;

    if (addr_len < sizeof(struct sockaddr_in))
        return -EINVAL;

    if (usin->sin_family != AF_INET)
        return -EAFNOSUPPORT;

    nexthop = daddr = usin->sin_addr.s_addr;
    inet_opt = rcu_dereference_protected(inet->inet_opt,
                         lockdep_sock_is_held(sk));
    if (inet_opt && inet_opt->opt.srr) {
        if (!daddr)
            return -EINVAL;
        nexthop = inet_opt->opt.faddr;
    }

    orig_sport = inet->inet_sport;
    orig_dport = usin->sin_port;
    fl4 = &inet->cork.fl.u.ip4;
    rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
                  RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
                  IPPROTO_TCP,
                  orig_sport, orig_dport, sk);
    if (IS_ERR(rt)) {
        err = PTR_ERR(rt);
        if (err == -ENETUNREACH)
            IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
        return err;
    }

    if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
        ip_rt_put(rt);
        return -ENETUNREACH;
    }

    if (!inet_opt || !inet_opt->opt.srr)
        daddr = fl4->daddr;

    if (!inet->inet_saddr)
        inet->inet_saddr = fl4->saddr;
    sk_rcv_saddr_set(sk, inet->inet_saddr);

    if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
        /* Reset inherited state */
        tp->rx_opt.ts_recent       = 0;
        tp->rx_opt.ts_recent_stamp = 0;
        if (likely(!tp->repair))
            tp->write_seq      = 0;
    }

    inet->inet_dport = usin->sin_port;
    sk_daddr_set(sk, daddr);

    inet_csk(sk)->icsk_ext_hdr_len = 0;
    if (inet_opt)
        inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;

    tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;

    /* Socket identity is still unknown (sport may be zero).
     * However we set state to SYN-SENT and not releasing socket
     * lock select source port, enter ourselves into the hash tables and
     * complete initialization after this.
     */
    tcp_set_state(sk, TCP_SYN_SENT);
    err = inet_hash_connect(tcp_death_row, sk);
    if (err)
        goto failure;

    sk_set_txhash(sk);

    rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
                   inet->inet_sport, inet->inet_dport, sk);
    if (IS_ERR(rt)) {
        err = PTR_ERR(rt);
        rt = NULL;
        goto failure;
    }
    /* OK, now commit destination to socket.  */
    sk->sk_gso_type = SKB_GSO_TCPV4;
    sk_setup_caps(sk, &rt->dst);
    rt = NULL;

    if (likely(!tp->repair)) {
        if (!tp->write_seq)
            tp->write_seq = secure_tcp_seq(inet->inet_saddr,
                               inet->inet_daddr,
                               inet->inet_sport,
                               usin->sin_port);
        tp->tsoffset = secure_tcp_ts_off(sock_net(sk),
                         inet->inet_saddr,
                         inet->inet_daddr);
    }

    inet->inet_id = tp->write_seq ^ jiffies;

    if (tcp_fastopen_defer_connect(sk, &err))
        return err;
    if (err)
        goto failure;

    err = tcp_connect(sk);  //负责进行connect工作

    if (err)
        goto failure;

    return 0;

failure:
    /*
     * This unhashes the socket and releases the local port,
     * if necessary.
     */
    tcp_set_state(sk, TCP_CLOSE);
    ip_rt_put(rt);
    sk->sk_route_caps = 0;
    inet->inet_dport = 0;
    return err;
}
EXPORT_SYMBOL(tcp_v4_connect);

接下来进入tcp_connect中,该函数进行封装报

/* Build a SYN and send it off. */
int tcp_connect(struct sock *sk)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct sk_buff *buff;
    int err;

    tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);

    if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
        return -EHOSTUNREACH; /* Routing failure or similar. */

    tcp_connect_init(sk);

    if (unlikely(tp->repair)) {
        tcp_finish_connect(sk, NULL);
        return 0;
    }

    buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
    if (unlikely(!buff))
        return -ENOBUFS;

    tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
    tcp_mstamp_refresh(tp);
    tp->retrans_stamp = tcp_time_stamp(tp);
    tcp_connect_queue_skb(sk, buff);
    tcp_ecn_send_syn(sk, buff);
    tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);

    /* Send off SYN; include data in Fast Open. */
    err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
          tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);//发送tcp报文
    if (err == -ECONNREFUSED)
        return err;

    /* We change tp->snd_nxt after the tcp_transmit_skb() call
     * in order to make this packet get counted in tcpOutSegs.
     */
    tp->snd_nxt = tp->write_seq;
    tp->pushed_seq = tp->write_seq;
    buff = tcp_send_head(sk);
    if (unlikely(buff)) {
        tp->snd_nxt = TCP_SKB_CB(buff)->seq;
        tp->pushed_seq  = TCP_SKB_CB(buff)->seq;
    }
    TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);

    /* Timer for repeating the SYN until an answer. */
    inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
                  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
    return 0;
}

从tcp_v4_connect中调用tcp_connect负责制作SYN包和发送报文,也可以说这个函数与底层的ip进行了对接,接受ip层的数据。

接下来看看负责accept的函数指针调用的函数,inet_csk_accept

struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
{
    struct inet_connection_sock *icsk = inet_csk(sk);
    struct request_sock_queue *queue = &icsk->icsk_accept_queue;
    struct request_sock *req;
    struct sock *newsk;
    int error;

    lock_sock(sk);

    /* We need to make sure that this socket is listening,
     * and that it has something pending.
     */
    error = -EINVAL;
    if (sk->sk_state != TCP_LISTEN)
        goto out_err;

    /* Find already established connection */
    if (reqsk_queue_empty(queue)) {
        long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);

        /* If this is a non blocking socket don't sleep */
        error = -EAGAIN;
        if (!timeo)
            goto out_err;

        error = inet_csk_wait_for_connect(sk, timeo); //循环
        if (error)
            goto out_err;
    }
    req = reqsk_queue_remove(queue, sk);
    newsk = req->sk;

    if (sk->sk_protocol == IPPROTO_TCP &&
        tcp_rsk(req)->tfo_listener) {
        spin_lock_bh(&queue->fastopenq.lock);
        if (tcp_rsk(req)->tfo_listener) {
            /* We are still waiting for the final ACK from 3WHS
             * so can't free req now. Instead, we set req->sk to
             * NULL to signify that the child socket is taken
             * so reqsk_fastopen_remove() will free the req
             * when 3WHS finishes (or is aborted).
             */
            req->sk = NULL;
            req = NULL;
        }
        spin_unlock_bh(&queue->fastopenq.lock);
    }
out:
    release_sock(sk);
    if (req)
        reqsk_put(req);
    return newsk;
out_err:
    newsk = NULL;
    req = NULL;
    *err = error;
    goto out;
}

那么accept实现不断的接受请求的,可以进入inet_csk_wait_for_connect中了解到

static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
{
    struct inet_connection_sock *icsk = inet_csk(sk);
    DEFINE_WAIT(wait);
    int err;

    /*
     * True wake-one mechanism for incoming connections: only
     * one process gets woken up, not the 'whole herd'.
     * Since we do not 'race & poll' for established sockets
     * anymore, the common case will execute the loop only once.
     *
     * Subtle issue: "add_wait_queue_exclusive()" will be added
     * after any current non-exclusive waiters, and we know that
     * it will always _stay_ after any new non-exclusive waiters
     * because all non-exclusive waiters are added at the
     * beginning of the wait-queue. As such, it's ok to "drop"
     * our exclusiveness temporarily when we get woken up without
     * having to remove and re-insert us on the wait queue.
     */
    for (;;) {
        prepare_to_wait_exclusive(sk_sleep(sk), &wait,
                      TASK_INTERRUPTIBLE);
        release_sock(sk);
        if (reqsk_queue_empty(&icsk->icsk_accept_queue))
            timeo = schedule_timeout(timeo);
        sched_annotate_sleep();
        lock_sock(sk);
        err = 0;
        if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
            break;
        err = -EINVAL;
        if (sk->sk_state != TCP_LISTEN)
            break;
        err = sock_intr_errno(timeo);
        if (signal_pending(current))
            break;
        err = -EAGAIN;
        if (!timeo)
            break;
    }
    finish_wait(sk_sleep(sk), &wait);
    return err;
}

该函数是一个无限的for循环,只要有连接请求,那么就跳出循环。

接下可我们可以通过在MeunOS的内核调试环境下设置断点来跟踪,由前面我们可以设置断点在tcp_v4_connect,和inet_csk_accept中来验证三次握手。
技术图片

可以看到accpet出现了两次,一次是server启动时等待接受,第二次是server接受了client的connect请求,和我们之前的理论相一致。

以上是关于深入理解TCP协议及其源代码的主要内容,如果未能解决你的问题,请参考以下文章

深入理解TCP协议及其源代码

深入理解TCP协议及其源代码

深入理解TCP协议及其源代码

深入理解TCP协议及其源代码

深入理解TCP协议及其源代码

深入理解TCP协议及其源代码