背包dp总结

Posted acmerszl

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了背包dp总结相关的知识,希望对你有一定的参考价值。

背包dp总结

背包每次写每次都不会,再次又学习了基础的背包,后面的遇到再补吧

01背包

首先对于每种物品可以取后者不取,所以我们可以写出记忆化的代码

(dp[pos][val])表示容量为(val),选后(pos)个物品的最大价值

每种物品取或不取,然后暴搜记忆化

int V, n;
int w[110];
int c[110];
int dp[1010][1010];
 
int dfs(int pos, int val) {
    if (pos == n + 1) return 0;
    if (~dp[pos][val]) return dp[pos][val];
    int tmp1 = -1, tmp2 = -1;
    tmp1 = dfs(pos + 1, val);
    if (val >= w[pos])
        tmp2 = dfs(pos + 1, val - w[pos]) + c[pos];
    dp[pos][val] = max(tmp1, tmp2);
    return dp[pos][val];
}
 
int main() {
    scanf("%d %d", &V, &n);
    memset(dp, -1, sizeof(dp));
    for (int i = 1; i <= n; i++) {
        scanf("%d %d", &w[i], &c[i]);
    }
 
    dfs(1, V);
 
    printf("%d
", dp[1][V]);
}

同样根据取与不取,我们可以用

(dp[i][j])表示前(i)个物品恰好装满容量为(j)的背包的最大价值

可以写出状态转移方程
[ dp[i][j]= egin{cases} dp[i-1][j], & ext{if j < w[i]} dp[i-1][j-w[i]]+c[i], & ext{if j >= w[i]} end{cases} ]

int V, n;
int w[110];
int c[110];
int dp[110][1010];
 
int main() {
    scanf("%d %d", &V, &n);
    for (int i = 1; i <= n; i++) {
        scanf("%d %d", &w[i], &c[i]);
    }
 
    for (int i = 0; i <= n; i++) dp[i][0] = 0;
 
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= V; j++) {
            if (j >= w[i])
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + c[i]);
            else
                dp[i][j] = dp[i - 1][j];
        }
    }
 
    printf("%d
", dp[n][V]);
}

可以看出都是由(i-1)推过来的,所以我们可以滚掉第一维。

(dp[j])表示容量为(j)的最大价值
[ dp[j]=max(dp[j], dp[j-w[i]]+c[i]) ]
这里考虑如果还是顺序的遍历,那么一个物品可能会被多次使用:
技术图片

所以我们要逆序遍历
技术图片

这样就能保证(dp[j])(dp[i-1][j])(dp[j-w[i]]+c[i])(dp[i-1][j-w[i]]+c[i])

int V, n;
int w[110];
int c[110];
int dp[1010];
 
int main() {
    scanf("%d %d", &V, &n);
    for (int i = 1; i <= n; i++) {
        scanf("%d %d", &w[i], &c[i]);
    }
 
    for (int i = 1; i <= n; i++) {
        for (int j = V; j >= w[i]; j--) {
            dp[j] = max(dp[j], dp[j - w[i]] + c[i]);
        }
    }
 
    printf("%d
", dp[V]);
}

以上是关于背包dp总结的主要内容,如果未能解决你的问题,请参考以下文章

背包问题总结

背包总结

01背包问题总结

01背包问题总结

Dp状态设计与方程总结

把01背包问题的底裤扒个底朝天!!!