AtCoder AGC033C Removing Coins (博弈论)

Posted suncongbo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了AtCoder AGC033C Removing Coins (博弈论)相关的知识,希望对你有一定的参考价值。

题目链接

https://atcoder.jp/contests/agc033/tasks/agc033_c

题解

终于会做点最简单的博弈论了……
首先题目中操作的含义就是选定一个点,把所有不是这个点的叶子删掉(如果这个点不是叶子就删所有叶子)。
对于任何一棵点数不少于(3)的树,一定存在一个点(比如非叶子节点),使得对该点操作之后直径减少(2);同时一定存在一个点(比如直径的端点),使得对该点操作后直径减少(1);同时不存在任何一种操作使得直径发生其他的变化。因此这是一个Bash博弈的模型,答案与直径长度模(3)的值有关。
设直径长度(点数)为(l). 若(l=1)则先手必胜,(l=2)则后手必胜。后面就变成了刚才讨论的情况,因此当且仅当直径长度(mod 3=2)时后手必胜。
时间复杂度(O(n)).

代码

#include<bits/stdc++.h>
#define llong long long
using namespace std;

inline int read()
{
    int x = 0,f = 1; char ch = getchar();
    for(;!isdigit(ch);ch=getchar()) {if(ch=='-') f = -1;}
    for(; isdigit(ch);ch=getchar()) {x = x*10+ch-48;}
    return x*f;
}

const int N = 2e5;
struct Edge
{
    int v,nxt;
} e[(N<<1)+3];
int fe[N+3];
int fa[N+3];
int len[N+3];
int n,en,mx;

void addedge(int u,int v)
{
    en++; e[en].v = v;
    e[en].nxt = fe[u]; fe[u] = en;
}

void dfs(int u)
{
    for(int i=fe[u]; i; i=e[i].nxt)
    {
        int v = e[i].v; if(v==fa[u]) continue;
        fa[v] = u; dfs(v);
        mx = max(mx,len[u]+len[v]+1);
        len[u] = max(len[u],len[v]+1);
    }
}

int main()
{
    scanf("%d",&n);
    for(int i=1; i<n; i++) {int u,v; scanf("%d%d",&u,&v); addedge(u,v); addedge(v,u);}
    dfs(1);
    if(mx%3==1) {puts("Second");}
    else {puts("First");}
    return 0;
}

以上是关于AtCoder AGC033C Removing Coins (博弈论)的主要内容,如果未能解决你的问题,请参考以下文章

[Agc028B]Removing Blocks_排列组合

[AGC028B]Removing Blocks(概率与期望)

AtCoder ABC 158F Removing Robots

Atcoder AGC031B Reversi (DP计数)

AtCoder AGC036C GP 2 (组合计数)

AtCoder AGC033F Adding Edges (图论)