DL4J之CNN对今日头条文本分类

Posted dongshenjun

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了DL4J之CNN对今日头条文本分类相关的知识,希望对你有一定的参考价值。

一、数据集介绍

    数据来源:今日头条客户端

    数据格式如下:

6551700932705387022_!_101_!_news_culture_!_京城最值得你来场文化之旅的博物馆_!_保利集团,马未都,中国科学技术馆,博物馆,新中国
6552368441838272771_!_101_!_news_culture_!_发酵床的垫料种类有哪些?哪种更好?_!_
6552407965343678723_!_101_!_news_culture_!_上联:黄山黄河黄皮肤黄土高原。怎么对下联?_!_
6552332417753940238_!_101_!_news_culture_!_林徽因什么理由拒绝了徐志摩而选择梁思成为终身伴侣?_!_
6552475601595269390_!_101_!_news_culture_!_黄杨木是什么树?_!_

    每行为一条数据,以_!_分割的个字段,从前往后分别是 新闻ID,分类code(见下文),分类名称(见下文),新闻字符串(仅含标题),新闻关键词

    分类code与名称:

100 民生 故事 news_story
101 文化 文化 news_culture
102 娱乐 娱乐 news_entertainment
103 体育 体育 news_sports
104 财经 财经 news_finance
106 房产 房产 news_house
107 汽车 汽车 news_car
108 教育 教育 news_edu 
109 科技 科技 news_tech
110 军事 军事 news_military
112 旅游 旅游 news_travel
113 国际 国际 news_world
114 证券 股票 stock
115 农业 三农 news_agriculture
116 电竞 游戏 news_game

    github地址:https://github.com/fate233/toutiao-text-classfication-dataset

    数据资源中给出了分类的实验结果:

Test Loss:   0.57, Test Acc:  83.81%

                    precision    recall  f1-score   support

        news_story       0.66      0.75      0.70       848

      news_culture       0.57      0.83      0.68      1531

news_entertainment       0.86      0.86      0.86      8078

       news_sports       0.94      0.91      0.92      7338

      news_finance       0.59      0.67      0.63      1594

        news_house       0.84      0.89      0.87      1478

          news_car       0.92      0.90      0.91      6481

          news_edu       0.71      0.86      0.77      1425

         news_tech       0.85      0.84      0.85      6944

     news_military       0.90      0.78      0.84      6174

       news_travel       0.58      0.76      0.66      1287

        news_world       0.72      0.69      0.70      3823

             stock       0.00      0.00      0.00        53

  news_agriculture       0.80      0.88      0.84      1701

         news_game       0.92      0.87      0.89      6244

       avg / total       0.85      0.84      0.84     54999

   下面我们就来用deeplearning4j来实现一个卷积结构对该数据集进行分类,看能不能得到更好的结果。

二、卷积网络可以用于文本处理的原因

    CNN非常适合处理图像数据,前面一篇文章《deeplearning4j——卷积神经网络对验证码进行识别》介绍了CNN对验证码进行识别。本篇博客将利用CNN对文本进行分类,在开始之前我们先来直观的说说卷积运算在做的本质事情是什么。卷积运算,本质上可以看做两个向量的点积,两个向量越同向,点积就越大,经过relu和MaxPooling之后,本质上是提取了与卷积核最同向的结构,这个“结构”实际上是图片上的一些线条。

    那么文本可以用CNN来处理吗?答案是肯定的,文本每个词用向量表示之后,依次排开,就变成了一张二维图,如下图,沿着红色箭头的方向(也就是文本的方向)看,两个句子用一幅图表示之后,会出现相同的单元,也就可以用CNN来处理。

    技术图片

三、文本处理的卷积结构

    那么,怎么设计这个CNN网络结构呢?如下图:(论文地址:https://arxiv.org/abs/1408.5882)

    技术图片

   注意点:

   1、卷积核移动的方向必须为句子的方向

   2、每个卷积核提取的特征为N行1列的向量

   3、MaxPooling的操作的对象是每一个Feature Map,也就是从每一个N行1列的向量中选择一个最大值

   4、把选择的所有最大值接起来,经过几个Fully Connected 层,进行分类

四、数据的预处理与词向量

    1、分词工具:HanLP

    2、处理后的数据格式如下:(类别code_!_词,其中,词与词之间用空格隔开,_!_为分割符)

   技术图片

    数据预处理代码如下:

public static void main(String[] args) throws Exception {
		BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(
				new FileInputStream(new File("/toutiao_cat_data/toutiao_cat_data.txt")), "UTF-8"));
		OutputStreamWriter writerStream = new OutputStreamWriter(
				new FileOutputStream("/toutiao_cat_data/toutiao_data_type_word.txt"), "UTF-8");
		BufferedWriter writer = new BufferedWriter(writerStream);
		String line = null;
		long startTime = System.currentTimeMillis();
		while ((line = bufferedReader.readLine()) != null) {
			String[] array = line.split("_!_");
			StringBuilder stringBuilder = new StringBuilder();
			for (Term term : HanLP.segment(array[3])) {
				if (stringBuilder.length() > 0) {
					stringBuilder.append(" ");
				}
				stringBuilder.append(term.word.trim());
			}
			writer.write(Integer.parseInt(array[1].trim()) + "_!_" + stringBuilder.toString() + "
");
		}
		writer.flush();
		writer.close();
		System.out.println(System.currentTimeMillis() - startTime);
		bufferedReader.close();
	}

五、词的向量表示

    1、one-hot

    用正交的向量来表示每一个词,这样表示无法反应词与词之间的关系,那么两句话中,要想复用同一个卷积核,那么必须出现一模一样的词才可以,实际上,我们要求模型可以举一反三,连相似的结构也可以提取,那么word2vec可以解决这个问题。

    2、word2vec

    word2vec可以充分考虑词与词之间的关系,相似的词,肯定有某些维度靠的比较近。那么也就考虑了词的语句之间的关系,训练word2vec有两种,skipgram和cbow,下面我们用cbow来训练词向量,结果会持久化下来,就得到了toutiao.vec的文件,下次变可重新加载该文件获得词的向量表示,代码如下:

String filePath = new ClassPathResource("toutiao_data_word.txt").getFile().getAbsolutePath();
		SentenceIterator iter = new BasicLineIterator(filePath);
		TokenizerFactory t = new DefaultTokenizerFactory();
		t.setTokenPreProcessor(new CommonPreprocessor());
		VocabCache<VocabWord> cache = new AbstractCache<>();
		WeightLookupTable<VocabWord> table = new InMemoryLookupTable.Builder<VocabWord>().vectorLength(100)
				.useAdaGrad(false).cache(cache).build();

		log.info("Building model....");
		Word2Vec vec = new Word2Vec.Builder()
				.elementsLearningAlgorithm("org.deeplearning4j.models.embeddings.learning.impl.elements.CBOW")
				.minWordFrequency(0).iterations(1).epochs(20).layerSize(100).seed(42).windowSize(8).iterate(iter)
				.tokenizerFactory(t).lookupTable(table).vocabCache(cache).build();

		vec.fit();
		WordVectorSerializer.writeWord2VecModel(vec, "/toutiao_cat_data/toutiao.vec");

六、CNN网络结构

    CNN网络结构如下:

技术图片

    说明:

    1、cnn3、cnn4、cnn5、cnn6卷积核大小为(3,vectorSize)、(4,vectorSize)、(5,vectorSize)、(6,vectorSize),步幅为1,也就是分别读取3、4、5、6个词,提取特征

    2、cnn3-stride2、cnn4-stride2、cnn5-stride2、cnn6-stride2卷积核大小为(3,vectorSize)、(4,vectorSize)、(5,vectorSize)、(6,vectorSize),步幅为2

    3、两组卷积核卷积的结果合并,分别得到merge1和merge2,都是4维张量,形状分别为(batchSize,depth1+depth2+depth3,height/1,1),(batchSize,depth1+depth2+depth3,height/2,1),特别说明:这里的卷积模式为ConvolutionMode.Same

    4、merge1、2分别经过MaxPooling,这里用的是GlobalPoolingLayer,和平台的Pooling层不同,这里会从指定维度中,取一个最大值,所以经过GlobalPoolingLayer之后,merge1、2分别变成2维张量,形状为(batchSize,depth1+depth2+depth3),那么GlobalPoolingLayer是如何求Max的呢?源码如下:

private INDArray activateHelperFullArray(INDArray inputArray, int[] poolDim) {
        switch (poolingType) {
            case MAX:
                return inputArray.max(poolDim);
            case AVG:
                return inputArray.mean(poolDim);
            case SUM:
                return inputArray.sum(poolDim);
            case PNORM:
                //P norm: https://arxiv.org/pdf/1311.1780.pdf
                //out = (1/N * sum( |in| ^ p) ) ^ (1/p)
                int pnorm = layerConf().getPnorm();

                INDArray abs = Transforms.abs(inputArray, true);
                Transforms.pow(abs, pnorm, false);
                INDArray pNorm = abs.sum(poolDim);

                return Transforms.pow(pNorm, 1.0 / pnorm, false);
            default:
                throw new RuntimeException("Unknown or not supported pooling type: " + poolingType + " " + layerId());
        }
    }

    5、两边GlobalPoolingLayer结果再接起来,丢给全连接网络,经过softmax分类器进行分类

    6、fc层,用了0.5的dropout防止过拟合,在下面的代码中可以看到。

完整代码如下:

public class CnnSentenceClassificationTouTiao {

	public static void main(String[] args) throws Exception {

		List<String> trainLabelList = new ArrayList<>();// 训练集label
		List<String> trainSentences = new ArrayList<>();// 训练集文本集合
		List<String> testLabelList = new ArrayList<>();// 测试集label
		List<String> testSentences = new ArrayList<>();//// 测试集文本集合
		Map<String, List<String>> map = new HashMap<>();

		BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(
				new FileInputStream(new File("/toutiao_cat_data/toutiao_data_type_word.txt")), "UTF-8"));
		String line = null;
		int truncateReviewsToLength = 0;
		Random random = new Random(123);
		while ((line = bufferedReader.readLine()) != null) {
			String[] array = line.split("_!_");
			if (map.get(array[0]) == null) {
				map.put(array[0], new ArrayList<String>());
			}
			map.get(array[0]).add(array[1]);// 将样本中所有数据,按照类别归类
			int length = array[1].split(" ").length;
			if (length > truncateReviewsToLength) {
				truncateReviewsToLength = length;// 求样本中,句子的最大长度
			}
		}
		bufferedReader.close();
		for (Map.Entry<String, List<String>> entry : map.entrySet()) {
			for (String sentence : entry.getValue()) {
				if (random.nextInt() % 5 == 0) {// 每个类别抽取20%作为test集
					testLabelList.add(entry.getKey());
					testSentences.add(sentence);
				} else {
					trainLabelList.add(entry.getKey());
					trainSentences.add(sentence);
				}
			}

		}
		int batchSize = 64;
		int vectorSize = 100;
		int nEpochs = 10;

		int cnnLayerFeatureMaps = 50;
		PoolingType globalPoolingType = PoolingType.MAX;
		Random rng = new Random(12345);
		Nd4j.getMemoryManager().setAutoGcWindow(5000);

		ComputationGraphConfiguration config = new NeuralNetConfiguration.Builder().weightInit(WeightInit.RELU)
				.activation(Activation.LEAKYRELU).updater(new Nesterovs(0.01, 0.9))
				.convolutionMode(ConvolutionMode.Same).l2(0.0001).graphBuilder().addInputs("input")
				.addLayer("cnn3",
						new ConvolutionLayer.Builder().kernelSize(3, vectorSize).stride(1, vectorSize)
								.nOut(cnnLayerFeatureMaps).build(),
						"input")
				.addLayer("cnn4",
						new ConvolutionLayer.Builder().kernelSize(4, vectorSize).stride(1, vectorSize)
								.nOut(cnnLayerFeatureMaps).build(),
						"input")
				.addLayer("cnn5",
						new ConvolutionLayer.Builder().kernelSize(5, vectorSize).stride(1, vectorSize)
								.nOut(cnnLayerFeatureMaps).build(),
						"input")
				.addLayer("cnn6",
						new ConvolutionLayer.Builder().kernelSize(6, vectorSize).stride(1, vectorSize)
								.nOut(cnnLayerFeatureMaps).build(),
						"input")
				.addLayer("cnn3-stride2",
						new ConvolutionLayer.Builder().kernelSize(3, vectorSize).stride(2, vectorSize)
								.nOut(cnnLayerFeatureMaps).build(),
						"input")
				.addLayer("cnn4-stride2",
						new ConvolutionLayer.Builder().kernelSize(4, vectorSize).stride(2, vectorSize)
								.nOut(cnnLayerFeatureMaps).build(),
						"input")
				.addLayer("cnn5-stride2",
						new ConvolutionLayer.Builder().kernelSize(5, vectorSize).stride(2, vectorSize)
								.nOut(cnnLayerFeatureMaps).build(),
						"input")
				.addLayer("cnn6-stride2",
						new ConvolutionLayer.Builder().kernelSize(6, vectorSize).stride(2, vectorSize)
								.nOut(cnnLayerFeatureMaps).build(),
						"input")
				.addVertex("merge1", new MergeVertex(), "cnn3", "cnn4", "cnn5", "cnn6")
				.addLayer("globalPool1", new GlobalPoolingLayer.Builder().poolingType(globalPoolingType).build(),
						"merge1")
				.addVertex("merge2", new MergeVertex(), "cnn3-stride2", "cnn4-stride2", "cnn5-stride2", "cnn6-stride2")
				.addLayer("globalPool2", new GlobalPoolingLayer.Builder().poolingType(globalPoolingType).build(),
						"merge2")
				.addLayer("fc",
						new DenseLayer.Builder().nOut(200).dropOut(0.5).activation(Activation.LEAKYRELU).build(),
						"globalPool1", "globalPool2")
				.addLayer("out",
						new OutputLayer.Builder().lossFunction(LossFunctions.LossFunction.MCXENT)
								.activation(Activation.SOFTMAX).nOut(15).build(),
						"fc")
				.setOutputs("out").setInputTypes(InputType.convolutional(truncateReviewsToLength, vectorSize, 1))
				.build();

		ComputationGraph net = new ComputationGraph(config);
		net.init();
		System.out.println(net.summary());
		Word2Vec word2Vec = WordVectorSerializer.readWord2VecModel("/toutiao_cat_data/toutiao.vec");
		System.out.println("Loading word vectors and creating DataSetIterators");
		DataSetIterator trainIter = getDataSetIterator(word2Vec, batchSize, truncateReviewsToLength, trainLabelList,
				trainSentences, rng);
		DataSetIterator testIter = getDataSetIterator(word2Vec, batchSize, truncateReviewsToLength, testLabelList,
				testSentences, rng);

		UIServer uiServer = UIServer.getInstance();
		StatsStorage statsStorage = new InMemoryStatsStorage();
		uiServer.attach(statsStorage);
		net.setListeners(new ScoreIterationListener(100), new StatsListener(statsStorage, 20),
				new EvaluativeListener(testIter, 1, InvocationType.EPOCH_END));

		// net.setListeners(new ScoreIterationListener(100),
		// new EvaluativeListener(testIter, 1, InvocationType.EPOCH_END));
		net.fit(trainIter, nEpochs);
	}

	private static DataSetIterator getDataSetIterator(WordVectors wordVectors, int minibatchSize, int maxSentenceLength,
			List<String> lableList, List<String> sentences, Random rng) {

		LabeledSentenceProvider sentenceProvider = new CollectionLabeledSentenceProvider(sentences, lableList, rng);

		return new CnnSentenceDataSetIterator.Builder().sentenceProvider(sentenceProvider).wordVectors(wordVectors)
				.minibatchSize(minibatchSize).maxSentenceLength(maxSentenceLength).useNormalizedWordVectors(false)
				.build();
	}
}

 代码说明:

    1、代码分两部分,第一部分是数据预处理,分出20%测试集、80%作为训练集

    2、第二部分为网络的基本结构代码

网络参数详细如下:

===============================================================================================================================================
VertexName (VertexType)            nIn,nOut   TotalParams   ParamsShape                Vertex Inputs                                           
===============================================================================================================================================
input (InputVertex)                -,-        -             -                          -                                                       
cnn3 (ConvolutionLayer)            1,50       15050         W:{50,1,3,100}, b:{1,50}   [input]                                                 
cnn4 (ConvolutionLayer)            1,50       20050         W:{50,1,4,100}, b:{1,50}   [input]                                                 
cnn5 (ConvolutionLayer)            1,50       25050         W:{50,1,5,100}, b:{1,50}   [input]                                                 
cnn6 (ConvolutionLayer)            1,50       30050         W:{50,1,6,100}, b:{1,50}   [input]                                                 
cnn3-stride2 (ConvolutionLayer)    1,50       15050         W:{50,1,3,100}, b:{1,50}   [input]                                                 
cnn4-stride2 (ConvolutionLayer)    1,50       20050         W:{50,1,4,100}, b:{1,50}   [input]                                                 
cnn5-stride2 (ConvolutionLayer)    1,50       25050         W:{50,1,5,100}, b:{1,50}   [input]                                                 
cnn6-stride2 (ConvolutionLayer)    1,50       30050         W:{50,1,6,100}, b:{1,50}   [input]                                                 
merge1 (MergeVertex)               -,-        -             -                          [cnn3, cnn4, cnn5, cnn6]                                
merge2 (MergeVertex)               -,-        -             -                          [cnn3-stride2, cnn4-stride2, cnn5-stride2, cnn6-stride2]
globalPool1 (GlobalPoolingLayer)   -,-        0             -                          [merge1]                                                
globalPool2 (GlobalPoolingLayer)   -,-        0             -                          [merge2]                                                
fc-merge (MergeVertex)             -,-        -             -                          [globalPool1, globalPool2]                              
fc (DenseLayer)                    400,200    80200         W:{400,200}, b:{1,200}     [fc-merge]                                              
out (OutputLayer)                  200,15     3015          W:{200,15}, b:{1,15}       [fc]                                                    
-----------------------------------------------------------------------------------------------------------------------------------------------
            Total Parameters:  263615
        Trainable Parameters:  263615
           Frozen Parameters:  0
===============================================================================================================================================

 DL4J的UIServer界面如下,这里我给定的端口号为9001,打开web界面可以看到平均loss的详情,梯度更新的详情等

http://localhost:9001/train/overview

技术图片

 七、掩模

    句子有长有短,CNN将如何处理呢?

    处理的办法其实很暴力,将一个minibatch中的最长句子找到,new出最大长度的张量,多余值用掩模掩掉即可,废话不多说,直接上代码

               if(sentencesAlongHeight){
                    featuresMask = Nd4j.create(currMinibatchSize, 1, maxLength, 1);
                    for (int i = 0; i < currMinibatchSize; i++) {
                        int sentenceLength = tokenizedSentences.get(i).getFirst().size();
                        if (sentenceLength >= maxLength) {
                            featuresMask.slice(i).assign(1.0);
                        } else {
                            featuresMask.get(NDArrayIndex.point(i), NDArrayIndex.point(0), NDArrayIndex.interval(0, sentenceLength), NDArrayIndex.point(0)).assign(1.0);
                        }
                    }
                } else {
                    featuresMask = Nd4j.create(currMinibatchSize, 1, 1, maxLength);
                    for (int i = 0; i < currMinibatchSize; i++) {
                        int sentenceLength = tokenizedSentences.get(i).getFirst().size();
                        if (sentenceLength >= maxLength) {
                            featuresMask.slice(i).assign(1.0);
                        } else {
                            featuresMask.get(NDArrayIndex.point(i), NDArrayIndex.point(0), NDArrayIndex.point(0), NDArrayIndex.interval(0, sentenceLength)).assign(1.0);
                        }
                    }
                }

    这里为什么有个if呢?生成句子张量的时候,可以任意指定句子的方向,可以沿着矩阵中height的方向,也可以是width的方向,方向不同,填掩模的那一维也就不同。

八、结果

    运行了10个Epoch结果如下:

========================Evaluation Metrics========================
 # of classes:    15
 Accuracy:        0.8420
 Precision:       0.8362	(1 class excluded from average)
 Recall:          0.7783
 F1 Score:        0.8346	(1 class excluded from average)
Precision, recall & F1: macro-averaged (equally weighted avg. of 15 classes)

Warning: 1 class was never predicted by the model and was excluded from average precision
Classes excluded from average precision: [12]

=========================Confusion Matrix=========================
    0    1    2    3    4    5    6    7    8    9   10   11   12   13   14
----------------------------------------------------------------------------
  973   35  114    2    9    8   11   19   14    6   19   11    0   22   13 | 0 = 0
   17 4636  250   37   51   16   14  151   47   29  232   36    0   82   44 | 1 = 1
  103  176 6980  108   16    8   31   62   83   41   53   77    0   36  163 | 2 = 2
    9   78  244 6692   37    9   52   59   33   27   57   54    0   10   96 | 3 = 3
    7   52   36   31 4072   96  101  107  581   20   64  108    0  135   37 | 4 = 4
   12   18   22    8  150 3061   27   36   53    2  100   16    0   56    2 | 5 = 5
   17   38   71   26   94   13 6443   43  174   31  121   39    0   32   34 | 6 = 6
   17  157   93   49   62   20   34 4793   85   14   58   36    0   49   31 | 7 = 7
    1   45   71   21  436   30  195  138 7018   48   54   49    0   45  148 | 8 = 8
   24   74   84   47   24    1   57   50   68 3963   45  431    0    9   65 | 9 = 9
    9  165   90   21   40   37   61   40   42   21 3428  111    0   78   30 | 10 = 10
   47   78  173   52  114   20   48   67   93  320  140 4097    0   48   29 | 11 = 11
    0    0    0    0   60    0    1    0    5    0    0    0    0    0    0 | 12 = 12
   35  105   31    6  139   37   34   61   79   11  153   35    0 3187   12 | 13 = 13
   14   36  210  128   31    2   19   20  164   44   38   15    0   19 5183 | 14 = 14

    平均准确率0.8420,比原资源中给定的结果略好,F1 score要略差一点,混淆矩阵中,有一个类别,无法被预测到,是因为样本中改类别数据量本身很少,难以抓到共性特征。这里参数如果精心调节一番,迭代更多次数,理论上会有更好的表现。

九、后记    

    读Deeplearning4j是一种享受,优雅的架构,清晰的逻辑,多种设计模式,扩展性强,将有后续博客,对dl4j源码进行剖析。

    

快乐源于分享。

   此博客乃作者原创, 转载请注明出处

以上是关于DL4J之CNN对今日头条文本分类的主要内容,如果未能解决你的问题,请参考以下文章

DL4J实战之二:鸢尾花分类

原创 | 一点资讯分类新闻爬虫及其文本挖掘

iOS仿今日头条壁纸应用筛选分类三方微博颜色填充等源码

DL4J实战之三:经典卷积实例(LeNet-5)

DL4J实战之五:矩阵操作基本功

DL4J实战之四:经典卷积实例(GPU版本)