离散数学

Posted jffun-blog

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了离散数学相关的知识,希望对你有一定的参考价值。

第一章 基础:逻辑和证明

  • 命题(proposition):真或假的陈述句
  • 否定:¬(!、not、非、补)
  • 合取:∧(&&、and、且、交)
  • 析取:∨(||、or、或、并)
  • 异或:⊕(xor)
    只有一个为真时为真,其余为假(相同为假,不同为真)
  • 条件语句:→(蕴含)
    p→q,p真q假为假,其余全为真(p为自然语言中的“条件”,q为自然语言中的“结果”)
  • 双条件语句:?(双蕴含)
    只有一个为真时为假,其余为真(相同为真,不同为假)

  • 永真式(重言式):真值为永远真
  • 矛盾:真值为永远假
  • 可能式:真值可能真可能假
  • 逻辑等价:≡
    p?q为永真式

  • 命题函数:P(x1, x2, x3, ..., xn)
    变量+谓词
  • 量词:全称量词,存在量词,约束论域量词

  • 推理规则:假言推理、取拒式、假言三段论、析取三段论、附加、简化、和取、消解

  • 证明方法:直接证明、反证法、归谬证明、穷举证明、分情形证明

第二章 基本结构:集合、函数、数列与求和

集合

  • 幂集合:包括全部子集的集合(2^n个元素)
  • 笛卡尔积:按乘的顺序生成组合过的集合

函数

f指派给A中元素a的惟一的B中元素是b,就写成f(a) = b。如果f是从A到B的函数,就写成f:A->B(函数有时也被称作映射或变换)

  • 反函数:对应关系对调
  • 函数组合:(f?g)(x) = f(g(x))





以上是关于离散数学的主要内容,如果未能解决你的问题,请参考以下文章

离散数学中传递闭包怎么求 通俗一点

离散数学中传递闭包怎么求 通俗一点

怎么求最小生成树 (离散数学 图论)

离散数学二元关系的传递性该怎么去判定

浅谈离散数学中数理逻辑与集合论的数学本质

离散数学权值怎么算