BP神经网络

Posted larry-xia

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BP神经网络相关的知识,希望对你有一定的参考价值。

介绍

BP神经网络属于多层前向神经网络,BP网络是前向网络的核心部分,也是整个人工神经网络体系的精华,广泛应用于分类识别、逼近、回归、压缩等领域。

BP神经网络采用误差反向传播(Error Back Propagtion,BP)的学习算法。一个包含2层隐层的BP神经网络的拓扑结构如下图所示:

技术分享图片

BP神经网络特点

  • BP网络由多层构成,层与层之间全连接,同一层之间的神经元无连接。多层的设计,使得BP网络可以从输入中挖掘更多的信息,完成更复杂的任务。
  • BP网络的传递函数必须可微。一般使用Sigmoid函数或者线性函数作为传递函数。根据输出值是否包含负值,Sigmoid函数又可以分为Log-Sigmoid函数和Tan-Sigmoid函数。Log-Sigmoid函数由技术分享图片确定:

技术分享图片

 

技术分享图片

BP网络的典型设计是隐含层采用Sigmoid函数作为传递函数,而输出层采用线性函数作为传递函数。

  • 采用误差反向传播算法进行学习。训练网络权值时,沿着减小误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值,随着学习的进行,误差越来越小。

BP网络学习算法

 

以上是关于BP神经网络的主要内容,如果未能解决你的问题,请参考以下文章

bp神经网络算法介绍 bp神经网络算法简介

BP算法、BP神经网络、遗传算法、神经网络这四者之间的关系

BP神经网络

用Matlab算BP神经网络的具体算法?

关于BP神经网络出现的问题

Matlab BP神经网络预测错误,怎么办?