最大尺寸的方形子矩阵

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最大尺寸的方形子矩阵相关的知识,希望对你有一定的参考价值。

我有一个大小为N * M的矩阵,填充0和1。对于每个查询K,我必须回答最大尺寸的方形子矩阵,其中最小值(1的数量,0的数量)= k,其中1 <= K <= 10 ^ 9。例如,考虑大小为8 * 8的矩阵:

10000000
01000000
00000000
00000000
00000000
00000000
00000000
00000000



k= 1        answer= 7
k=2         answer= 8
k=0         answer= 6
k=1001      answer= 8

我理解,对于k = 1,子矩阵(1,1)到(7,7)适用于k = 2,最大的方形子矩阵是原始矩阵本身。对于k = 1,我们必须得到所有7 * 7平方子矩阵。找到他们的分钟(1号,0号),然后将所有这些作为答案的最小值。

我无法生成所有方形子矩阵对。谁能帮助我实现这一目标?此外,如果有任何更短的方式可用,那也会很好,因为这需要很长时间。

答案

这是面试问题吗?这个问题与最大子矩阵和(https://www.geeksforgeeks.org/maximum-sum-rectangle-in-a-2d-matrix-dp-27/)非常相似,其DP解决方案应该能够适应这一点。

编辑:

以下是O(n ^ 3)时间O(n ^ 2)存储器要实现的导入件是区域D =整个区域 - B - C + A

| A B |
| C D |

#include <stdlib.h>
#include <stdio.h>

int **create_dp(int **matrix, int **dp, int row, int col) {
  dp[0][0] = matrix[0][0];
  for (int i = 1; i < row; ++i) 
    dp[i][0] = matrix[i][0] + dp[i - 1][0];
  for (int j = 1; j < col; ++j) 
    dp[0][j] = matrix[0][j] + dp[0][j - 1];
  for (int i = 1; i < row; ++i) 
    for (int j = 1; j < col; ++j) 
      dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + matrix[i][j] - dp[i - 1][j - 1];
}

int min(int x, int y) { 
  if (x > y) return y;
  return x;
}

int max_square_submatrix(int **matrix, int row, int col, int query) {
  // the value dp[i][j] is the sum of all values in matrix up to i, j 
  // i.e. dp[1][1] = matrix[0][0] + matrix[1][0] + matrix[0][1] + matrix[1][1]
  int **dp = malloc(sizeof(int*) * row);
  for (int i = 0; i < row; ++i) dp[i] = malloc(sizeof(int) * col);
  create_dp(matrix, dp, row, col);
  int global_max_size = 0;
  // go through all squares in matrix
  for (int i = 0; i < row; ++i) {
    for (int j = 0; j < col; ++j) {
      // begin creating square matrices
      // this is the largest size a square matrix could have
      int max_size = min(row - i, col - j) - 1;
      for (; max_size >= 0; --max_size) {
        // you need to see above diagram in order to visualize this step
        int num_ones = dp[i + max_size][j + max_size];
        if (i > 0 && j > 0)
          num_ones += -dp[i + max_size][j - 1] - dp[i - 1][j + max_size] + dp[i - 1][j - 1];
        else if (j > 0)
          num_ones += -dp[i + max_size][j - 1]; 
        else if (i > 0)
          num_ones += -dp[i - 1][j + max_size];
        if (num_ones <= query) break;
      }
      if (global_max_size < max_size + 1) global_max_size = max_size + 1; 
    }
  }
  // free dp memory here
  return global_max_size;
}

int main() {
  #define N 8
  #define M 8
  int **matrix = malloc(sizeof(int*) * N);
  for (int i = 0; i < N; ++i) matrix[i] = malloc(sizeof(int) * M);
  for (int i = 0; i < N; ++i) 
    for (int j = 0; j < M; ++j)
      matrix[i][j] = 0;

  matrix[0][0] = matrix[1][1] = 1;

  printf("%d
", max_square_submatrix(matrix, 8, 8, 1));
  printf("%d
", max_square_submatrix(matrix, 8, 8, 2));
  printf("%d
", max_square_submatrix(matrix, 8, 8, 0));
  printf("%d
", max_square_submatrix(matrix, 8, 8, 1001));
}

以上是关于最大尺寸的方形子矩阵的主要内容,如果未能解决你的问题,请参考以下文章

最大子段和||最大子矩阵和||最大全0子矩阵||最大全0子正方形

最大子矩阵的一种实现方法

bzoj 1047 理想的正方形

动态规划之悬线法模板(最大子矩阵问题)

找子矩阵

寻找总和最大的子矩阵[重复]