P3747 [六省联考2017]相逢是问候

Posted nofind

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P3747 [六省联考2017]相逢是问候相关的知识,希望对你有一定的参考价值。

题意

如果对一个数操作(k)次,那么这个数会变成(c^{c^{...^{a_i}}}),其中(c)(k)个。

根据P4139 上帝与集合的正确用法这道题,我们可以知道一个数不断变为自己的欧拉函数,大约(log)次就会变成1,而任何数模(1)都是(0),于是我们可以用势能线段树解决。

因为模数不变,因此我们可以预处理所有(varphi(varphi(...varphi(p)...))),之后在线段树上记录操作次数。

这样是三个(log)的,因为还要快速幂,可以对每个(varphi(varphi(...varphi(p)...)))预处理,用光速幂解决。

注意,扩展中国剩余定理(a_kequiv a^{k\%varphi(p)+varphi(p)}pmod{p})适用当且仅当(kgeqslant varphi(p)),因此我们在求值时用一个(flag)表示是否要(+varphi(p))

code:

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define ls(p) (p<<1)
#define rs(p) (p<<1|1)
const int maxn=50010;
const int maxt=10010;
int n,m,mod,C,maxtim;
int a[maxn];
int pw1[60][maxt],pw2[60][maxt];
bool flag;
bool flag1[60][maxt],flag2[60][maxt];
vector<int>ve;
struct Seg
{
    #define sum(p) (seg[p].sum)
    #define cnt(p) (seg[p].cnt)
    int sum,cnt;
}seg[maxn<<2];
inline int read()
{
    char c=getchar();int res=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9')res=res*10+c-'0',c=getchar();
    return res*f;
}
inline int phi(int x)
{
    int res=x,tmp=x;
    for(int i=2;i*i<=tmp;i++)
    {
        if(tmp%i)continue;
        res=res/i*(i-1);
        while(tmp%i==0)tmp/=i;
    }
    if(tmp>1)res=res/tmp*(tmp-1);
    return res;
}
inline void pre_work()
{
    int tmp=mod;
    ve.push_back(mod);
    while(tmp>1)tmp=phi(tmp),ve.push_back(tmp);
    ve.push_back(1);
    for(unsigned int i=0;i<ve.size();i++)
    {
        pw1[i][0]=1;
        for(int j=1;j<=10000;j++)
        {
            pw1[i][j]=pw1[i][j-1]*C;
            if(pw1[i][j]>=ve[i])pw1[i][j]%=ve[i],flag1[i][j]=1;
            flag1[i][j]|=flag1[i][j-1];
        }
    }
    for(unsigned int i=0;i<ve.size();i++)
    {
        pw2[i][0]=1;flag2[i][1]=flag1[i][10000];
        for(int j=1;j<=10000;j++)
        {
            pw2[i][j]=pw2[i][j-1]*pw1[i][10000];
            if(pw2[i][j]>=ve[i])pw2[i][j]%=ve[i],flag2[i][j]=1;
            flag2[i][j]|=flag2[i][j-1];
        }
    }
}
inline void up(int p)
{
    sum(p)=(sum(ls(p))+sum(rs(p)))%mod;
    cnt(p)=min(cnt(ls(p)),cnt(rs(p)));
}
void build(int p,int l,int r)
{
    if(l==r){sum(p)=a[l];return;}
    int mid=(l+r)>>1;
    build(ls(p),l,mid);build(rs(p),mid+1,r);
    up(p);
}
inline int power(int x,int id)
{
    flag=0;
    int res=pw1[id][x%10000]*pw2[id][x/10000];
    if(res>=ve[id])res%=ve[id],flag=1;
    flag|=flag1[id][x%10000]|flag2[id][x/10000];
    return res;
}
int calc(int x,int dep,int k)
{
    flag=0;
    if(dep==k)
    {
        if(x>=ve[dep])flag=1,x%=ve[dep];
        return x;
    }
    int tmp=calc(x,dep+1,k);
    return power(flag?tmp+ve[dep+1]:tmp,dep);
}
void change(int p,int l,int r,int ql,int qr)
{
    if(cnt(p)>=(int)ve.size()-1)return;
    if(l==r)
    {
        cnt(p)++;
        sum(p)=calc(a[l],0,cnt(p));
        return;
    }
    int mid=(l+r)>>1;
    if(ql<=mid)change(ls(p),l,mid,ql,qr);
    if(qr>mid)change(rs(p),mid+1,r,ql,qr);
    up(p);
}
int query(int p,int l,int r,int ql,int qr)
{
    if(l>=ql&&r<=qr)return sum(p);
    int mid=(l+r)>>1,res=0;
    if(ql<=mid)res=(res+query(ls(p),l,mid,ql,qr))%mod;
    if(qr>mid)res=(res+query(rs(p),mid+1,r,ql,qr))%mod;
    return res;
}
signed main()
{
    //freopen("test.in","r",stdin);
    //freopen("test.out","w",stdout); 
    n=read();m=read();mod=read();C=read();
    for(int i=1;i<=n;i++)a[i]=read();
    build(1,1,n);
    pre_work();
    for(int i=1;i<=m;i++)
    {
        int op=read(),l=read(),r=read();
        if(!op)change(1,1,n,l,r);
        else printf("%lld
",query(1,1,n,l,r)); 
    }
    return 0;
}

以上是关于P3747 [六省联考2017]相逢是问候的主要内容,如果未能解决你的问题,请参考以下文章

P3747 相逢是问候 欧拉定理+线段树

[六省联考2017]相逢是问候

[六省联考2017]相逢是问候

[BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)

[六省联考2017]相逢是问候

[六省联考2017]相逢是问候(线段树+拓展欧拉定理)