题解完全平方数

Posted h-lka

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了题解完全平方数相关的知识,希望对你有一定的参考价值。

(Luogu4318)

题目大意:多组数据求第(k)个没有完全平方因子的数是谁。

那么可以设(f(i))为只是(i^2)倍数的数的个数。

那要求(n)以内的不是完全平方数倍数的数的个数,那就要把是倍数的累加起来,减去。

(F(i)=sum_{i|d}f(d))

(F)函数表示的即为上面所述的意思。

考虑(f(i))等于什么。

显然是(frac{n}{i^2})对吧,就是求(n)(i^2)的多少倍就行。

那么考虑(F(i):)

[F(i)=sum_{i|d}f(d)=sum_{i|d}frac{n}{d^2}]

可以看出来就是一个倍数形式的莫比乌斯反演。反演得:

[f(i)=sum_{i|d}mu(frac{d}{i})F(d)]

那么对于一个数它前面有多少完全平方数的倍数,就等于当前的(f(1))吧,仅仅是(1^2=1)的数的倍数而不是其它完全平方数的倍数的数的个数。

那么由上面公式有:

[f(1)=sum_{d}mu(d)F(d)=sum_{d}^{d*d<=n}mu(d)frac{n}{d^2}]

这个式子可以数论分块对吧,求这个东西的复杂度是(O(sqrt{n}))

那么考虑求一个序列里面第(k)大的求法。(不能排序)

看到(k)的范围想到二分。

发现循环范围小于等于(sqrt{n}),于是线性筛出(sqrt{MAX})(mu(i)),预处理前缀和,解决的时候套一个二分板子即可。

总复杂度(O(Tsqrt{n}log{n}))

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
using namespace std;
#define int long long
const int MAXN=5e4+10;
int fg[MAXN+10],mu[MAXN+10],T,k;
int prime[MAXN+10],tot,sum[MAXN+10];
void screen(){
    mu[1]=1;
    for(int i=2;i<=MAXN;++i){
        if(!fg[i])prime[++tot]=i,mu[i]=-1;
        for(int j=1;j<=tot&&i*prime[j]<=MAXN;++j){
            fg[i*prime[j]]=1;
            if(i%prime[j]==0){
                mu[i*prime[j]]=0;
                break;
            }
            mu[i*prime[j]]=-mu[i];
        }
    }
    for(int i=1;i<=MAXN;++i)sum[i]=sum[i-1]+mu[i];
}
bool check(int x){
    int ans=0,m=sqrt(x);
    for(int l=1,r;l<=m;l=r+1){
        r=min((int)sqrt(x/(x/(l*l))),m);
        ans+=(sum[r]-sum[l-1])*(x/(l*l));
    }
    return ans>=k;
}
void solve(){
    int l=1,r=2000000000;
    while(l+1<r){
        int mid=(l+r)>>1;
        if(check(mid))r=mid;
        else l=mid;
    }
    if(check(l))printf("%lld
",l);
    else printf("%lld
",r);
}
signed main(){
    scanf("%lld",&T);
    screen();
    while(T--){
        scanf("%lld",&k);
        solve();
    }
    return 0;
}

注意二分范围不能太小。

以上是关于题解完全平方数的主要内容,如果未能解决你的问题,请参考以下文章

题解报告Leecode367. 有效的完全平方数——Leecode每日一题系列

《LeetCode之每日一题》:57.完全平方数

完全平方数

leetcode 279. 完全平方数----完全背包的套路

[中山市选2011]完全平方数 ——莫比乌斯函数

BZOJ2440: [中山市选2011]完全平方数