题解 SP3734 PERIODNI - Periodni
Posted lhm-
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了题解 SP3734 PERIODNI - Periodni相关的知识,希望对你有一定的参考价值。
考虑用(DP)和组合数学来解决。
因为原图像不规则的形状不好处理,所以先用笛卡尔树(性质为小根堆)将其划分成一个一个的矩形。
发现在笛卡尔树上的每个节点都对应一个矩形,矩形高为(h_x-h_{fa_x}),宽为(size_x)。
结合笛卡尔树的性质,不难得到,红色矩形所对应的节点的两个儿子为绿色矩形和蓝色矩形。
设(f_{x,i})为在节点(x)所对应的矩形及其以上的图形中放(i)个点的方案数,那么答案为(f_{root,k})
与子树合并时只需枚举在子树图像中放的点个数,再用乘法原理乘起来。
再考虑其本身的矩形。
若是在一个(n imes m)的矩形中放(k)个点,其方案数为(C_{n}^kC_{m}^kk!),因为你需要从(n)行中选(k)行,从(m)列中选(k)列,同时这些选择的顺序可以改变,所以再乘上(k!)。
那么再考虑本身的矩形时,枚举在自身的矩形中放的点个数,再乘上(C_{n}^kC_{m}^kk!)即可
实现细节就看代码吧。
(code:)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define maxn 5010
#define mod 1000000007
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,k,top,root;
ll ls[maxn],rs[maxn],st[maxn];
ll f[maxn][maxn],h[maxn],siz[maxn],fac[1000050],inv[1000050];
ll qp(ll x,ll y)
{
ll ans=1;
while(y)
{
if(y&1) ans=(ans*x)%mod;
x=(x*x)%mod;
y>>=1;
}
return ans%mod;
}
void init()
{
fac[0]=fac[1]=inv[0]=inv[1]=1;
fac[2]=2,inv[2]=qp(2,mod-2);
for(int i=3;i<=1000000;++i)
{
fac[i]=(fac[i-1]*i)%mod;
inv[i]=qp(fac[i],mod-2);
}
}
ll C(ll n,ll m)
{
if(n<m) return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int build()
{
for(int i=1;i<=n;++i)
{
while(top&&h[st[top]]>h[i]) ls[i]=st[top--];
if(top) rs[st[top]]=i;
st[++top]=i;
}
return st[1];
}
void dfs(int x,int val)
{
f[x][0]=siz[x]=1;
ll high=h[x]-val;
if(ls[x])
{
ll y=ls[x];
dfs(y,h[x]),siz[x]+=siz[y];
for(ll i=min(siz[x],k);i>=0;--i)
for(ll j=1;j<=min(siz[y],i);++j)
f[x][i]=(f[x][i]+f[y][j]*f[x][i-j]%mod)%mod;
}
if(rs[x])
{
ll y=rs[x];
dfs(y,h[x]),siz[x]+=siz[y];
for(ll i=min(siz[x],k);i>=0;--i)
for(ll j=1;j<=min(siz[y],i);++j)
f[x][i]=(f[x][i]+f[y][j]*f[x][i-j]%mod)%mod;
}
for(ll i=min(siz[x],k);i>=0;--i)
for(ll j=1;j<=min(high,i);++j)
f[x][i]=(f[x][i]+f[x][i-j]*fac[j]%mod*C(high,j)%mod*C(siz[x]-(i-j),j)%mod)%mod;
}
int main()
{
init();
read(n),read(k);
for(int i=1;i<=n;++i) read(h[i]);
root=build();
dfs(root,0);
printf("%lld",f[root][k]);
return 0;
}
以上是关于题解 SP3734 PERIODNI - Periodni的主要内容,如果未能解决你的问题,请参考以下文章