POJ 3734 Blocks

Posted zlrrrr

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 3734 Blocks相关的知识,希望对你有一定的参考价值。

http://poj.org/problem?id=3734

 

Description

Panda has received an assignment of painting a line of blocks. Since Panda is such an intelligent boy, he starts to think of a math problem of painting. Suppose there are N blocks in a line and each block can be paint red, blue, green or yellow. For some myterious reasons, Panda want both the number of red blocks and green blocks to be even numbers. Under such conditions, Panda wants to know the number of different ways to paint these blocks.

Input

The first line of the input contains an integer T(1≤T≤100), the number of test cases. Each of the next T lines contains an integer N(1≤N≤10^9) indicating the number of blocks.

Output

For each test cases, output the number of ways to paint the blocks in a single line. Since the answer may be quite large, you have to module it by 10007.

Sample Input

2
1
2

Sample Output

2
6

题解:矩阵快速幂

代码:

#include <iostream>
#include <algorithm>
#include <math.h>
#include <vector>
#include <stdio.h>
using namespace std;

typedef long long ll;

typedef vector<ll> vec;
typedef vector<vec> mat;

const int M = 10007;
int T, N;

mat mul(mat& A, mat& B) {
    mat C(A.size(), vec(B[0].size()));
    for ( int i = 0 ; i < A.size() ;i ++) {
        for ( int k = 0 ; k < B.size() ; k ++) {
            for ( int j = 0 ; j < B[0].size() ; j ++) {
                C[i][j] = (C[i][j] + A[i][k] * B[k][j] % M) % M;
            }
        }
    }
    return C;
}

mat pow(mat A, ll n) {
    mat B(A.size(), vec(A.size()));
    for ( int i = 0 ; i < A.size() ; i ++) {
        B[i][i] = 1;
    }
    while ( n > 0 ) {
        if ( n & 1 ) B = mul(B, A);
        A = mul(A, A);
        n >>= 1;
    }
    return B;
}

void solve() {
    mat A(3, vec(3));
    A[0][0] = 2; A[0][1] = 1; A[0][2] = 0;
    A[1][0] = 2; A[1][1] = 2; A[1][2] = 2;
    A[2][0] = 0; A[2][1] = 1; A[2][2] = 2;
    A = pow(A, N);
    printf("%d
", A[0][0]);
}

int main() {
    scanf("%d", &T);
    while(T --) {
        scanf("%d", &N);
        solve();
    }
    return 0;
}

  

以上是关于POJ 3734 Blocks的主要内容,如果未能解决你的问题,请参考以下文章

POJ 3734 Blocks(矩阵快速幂加递推)

POJ3734Blocks(递推+矩阵快速幂)

POJ 3734 Blocks (矩阵快速幂)

poj3734 Blocks

poj3734 Blocks[矩阵优化dp or 组合数学]

[POJ 3734] Blocks 指数型生成函数