cf584DDima and Lisa(素数性质,三素数,哥德巴赫猜想)
Posted wjc2021
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了cf584DDima and Lisa(素数性质,三素数,哥德巴赫猜想)相关的知识,希望对你有一定的参考价值。
Dima loves representing an odd number as the sum of multiple primes, and Lisa loves it when there are at most three primes. Help them to represent the given number as the sum of at most than three primes.
More formally, you are given an odd numer n. Find a set of numbers pi (1 ≤ i ≤ k), such that
- 1 ≤ k ≤ 3
- pi is a prime
The numbers pi do not necessarily have to be distinct. It is guaranteed that at least one possible solution exists.
The single line contains an odd number n (3 ≤ n < 109).
In the first line print k (1 ≤ k ≤ 3), showing how many numbers are in the representation you found.
In the second line print numbers pi in any order. If there are multiple possible solutions, you can print any of them.
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<utility> #include<cstring> #include<string> #include<vector> #include<stack> #include<set> #include<map> #include<bitset> #define inf 0x3f3f3f3f using namespace std; typedef long long ll; typedef pair<int,int> pll; const int maxn=1e5+10; const int mod =1e9+7; char s1[maxn],s2[maxn],s3[maxn]; int v[26]; int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n,t; string s; cin >> n >> t; int ans=n-t; cin >> s1+1; cin >> s2+1; int num=0; for(int i=1;i<=n;i++) { if(num>=ans) break; if(s1[i]==s2[i]) { s3[i]=s1[i]; num++; } } ans=ans-num; int num1=ans,num2=ans; for(int i=1;i<=n;i++) { if(!num1) break; if(s1[i]!=s3[i]) { num1--; s3[i]=s1[i]; } } for(int i=1;i<=n;i++) { if(!num2) break; if(s3[i]<‘a‘||s3[i]>‘z‘) { num2--; s3[i]=s2[i]; } } if(num1>0||num2>0) cout << -1 << endl; else { for(int i=1;i<=n;i++) { if(s3[i]>=‘a‘&&s3[i]<=‘z‘) cout <<s3[i]; else { for(int j=0;j<26;j++) { char c=j+‘a‘; if(c!=s1[i]&&c!=s2[i]) { cout << c; break; } } } } } return 0; }
以上是关于cf584DDima and Lisa(素数性质,三素数,哥德巴赫猜想)的主要内容,如果未能解决你的问题,请参考以下文章
CF1106F Lunar New Year and a Recursive Sequence(矩阵快速幂+bsgs+exgcd)