CF1106F Lunar New Year and a Recursive Sequence(矩阵快速幂+bsgs+exgcd)

Posted bztminamoto

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CF1106F Lunar New Year and a Recursive Sequence(矩阵快速幂+bsgs+exgcd)相关的知识,希望对你有一定的参考价值。

题面

传送门

前置芝士

(BSGS)

什么?你不会(BSGS)?百度啊

原根

对于素数(p)和自然数(a),如果满足(a^xequiv 1pmod{p})的最小的(x)(p-1),那么(a)就是(p)的一个原根

离散对数

对于素数(p),以及(p)的一个原根(g),定义(y)(x)的离散对数,当且仅当(g^yequiv xpmod{p}),记(y)(ind_g x)。不难发现原数和离散对数可以一一对应。也不难发现离散对数用(bsgs)就可以求得

题解

考虑把题目转化一下,因为(f_{1,...,k-1})都是(1),只有(f_k)不是(1),那么最终的(f_n)一定是形如({f_k}^x)的形式

那么我们只考虑上面的次数的转移,转移式就可以从一个前面一堆乘起来变成前面一堆加起来的形式。矩阵快速幂求出最终的(f_n)中的次数就行了

那么就是一个({f_k}^xequiv f_npmod{p})的形式了,其中(x)我们之前已经用矩阵快速幂算出来了

于是就是关于形如(x^aequiv bpmod{p})形式的方程求解的问题了

考虑两边取离散对数,学过(NTT)的都知道(998244353)的原根是(3),那么就可以转化成(a imes ind_g xequiv ind_g bpmod{p-1}),用(exgcd)解出(ind_gx),然后代入计算就可以了

于是问题就解决了

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
    R int res=1,f=1;R char ch;
    while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
    for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
    return res*f;
}
const int N=105,P=998244353,g=3;
inline int add(R int x,R int y,R int P){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y,R int P){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y,R int P){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y,R int P){
    R int res=1;
    for(;y;y>>=1,x=mul(x,x,P))if(y&1)res=mul(res,x,P);
    return res;
}
int n,kkk,m;
struct Matrix{
    int a[N][N];
    Matrix(){memset(a,0,sizeof(a));}
    inline int* operator [](const R int &x){return a[x];}
    Matrix operator *(Matrix b){
        Matrix res;
        fp(i,1,kkk)fp(k,1,kkk)fp(j,1,kkk)res[i][j]=add(res[i][j],mul(a[i][k],b[k][j],P-1),P-1);
        return res;
    }
}A,B;
Matrix ksm(Matrix x,int y){
    Matrix res;fp(i,1,kkk)res[i][i]=1;
    for(;y;y>>=1,x=x*x)if(y&1)res=res*x;
    return res;
}
map<int,int>mp;
int bsgs(int x){
    int m=sqrt(P)+1;mp.clear();
    for(R int i=0,res=x;i<m;++i,res=1ll*res*g%P)mp[res]=i;
    for(R int i=1,tmp=ksm(g,m,P),res=tmp;i<=m+1;++i,res=1ll*res*tmp%P)
        if(mp.count(res))return i*m-mp[res];
}
int exgcd(int a,int b,int &x,int &y){
   if(!b)return x=1,y=0,a;
   int d=exgcd(b,a%b,y,x);
   y-=a/b*x;return d;
}
int a,b,c,d,x,y,t,res;
int main(){
    kkk=read();
    fp(i,1,kkk)B[i][1]=read();
    fp(i,1,kkk-1)B[i][i+1]=1;
    A[1][1]=1;
    n=read(),m=read();
    A=A*ksm(B,n-kkk);
    c=bsgs(m),a=A[1][1],b=P-1;
    d=exgcd(a,b,x,y);
    if(c%d)return puts("-1"),0;
    t=abs(b/d);
    x=(1ll*x*(c/d)%t+t)%t;
//    printf("%d %d
",x,bsgs(m));
    res=ksm(g,x+P-1,P);
    printf("%d
",res);
    return 0;
}

以上是关于CF1106F Lunar New Year and a Recursive Sequence(矩阵快速幂+bsgs+exgcd)的主要内容,如果未能解决你的问题,请参考以下文章

CF1106F Lunar New Year and a Recursive Sequence(矩阵快速幂+bsgs+exgcd)

CF1106F Lunar New Year and a Recursive Sequence 原根矩阵快速幂高次剩余BSGS

Codeforces 1106F Lunar New Year and a Recursive Sequence (数学线性代数线性递推数论BSGS扩展欧几里得算法)

CF - 1106 E Lunar New Year and Red Envelopes DP

CF1106E Lunar New Year and Red Envelopes

Codeforces Round #536 (Div. 2) - D. Lunar New Year and a Wander(最短路)