矩阵(01背包+滚动数组)

Posted ppxppx

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了矩阵(01背包+滚动数组)相关的知识,希望对你有一定的参考价值。

题意:

有一个(n×m)的矩阵,你从左上角走到右下角,只能向下和向右走.每个点上有一个重量(v_{i,j}) 价值(w_{i,j})的物品,你有一个容量为S的背包,经过一个点你可以将此点的物品放入背包,求最大能得到的价值.

分析:

(f_{i,j,k})表示走到((i,j)),背包剩余容量为 k 时的最大价值.

(f_{i,j})(f_{i-1,j})(f_{i,j-1})按普通 01 背包的方法转移.

时间复杂度 (O(N^2V)),空间复杂度 (O(N^2V)).因为(400^3)可能会爆空间MLE,所以我们可以按行或对角线滚动数组(我是按行滚动的),这样空间复杂度(O(NV)).

int n,m,S,ans;
int v[405][405],w[405][405],f[405][405];
//v重量,w价值
int main(){
    n=read();m=read();S=read();
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
        v[i][j]=read();
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
        w[i][j]=read();
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    for(int k=S;k>=0;k--){
        if(k>=v[i][j])f[j][k]=max(f[j][k],max(f[j][k-v[i][j]]+w[i][j],max(f[j-1][k],f[j-1][k-v[i][j]]+w[i][j])));
        else f[j][k]=max(f[j][k],f[j-1][k]);
    }
//因为题目中说了"只能向下和向右走",
//所以对于第i行的状态,一定只能由第i-1行转移得来,
//所以此时我们可以滚掉第一维i.
    for(int i=0;i<=S;i++)
        ans=max(ans,f[m][i]);
    printf("%d
",ans);
    return 0;
}

滚动数组是动态规划,尤其是背包问题中很重要的一个思想,它虽然不能优化时间复杂度,但它能够减少空间复杂度.因为有时候可能题目会故意卡你的空间,所以我们要掌握好.

以上是关于矩阵(01背包+滚动数组)的主要内容,如果未能解决你的问题,请参考以下文章

01背包+滚动数组

把01背包问题的底裤扒个底朝天!!!

[CF837D] Round Subset(滚动数组,01背包)

01 背包基础 - 空间优化 (滚动数组,一维阵列)

动态规划第五篇:01背包问题和完全背包问题

动态规划第五篇:01背包问题和完全背包问题