jzoj5990. 北大2019冬令营模拟2019.1.6Bear (状压dp)

Posted bztminamoto

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了jzoj5990. 北大2019冬令营模拟2019.1.6Bear (状压dp)相关的知识,希望对你有一定的参考价值。

题面

技术分享图片
技术分享图片

题解

我永远讨厌dp.jpg

搞了一个下午优化复杂度最后发现只要有一个小trick就可以A了→_→。全场都插头dp就我一个状压跑得贼慢……

不难发现我们可以状压,对于每一行,用状态(S)表示有哪些格子是已经被上一行推倒了的,那么我们可以枚举本行所有格子的字母情况,然后计算一下这个时候下一行格子被推倒的情况,把这一行的贡献加到下一行就行了。

简单来说就是记一个(f[pos][S])表示第(pos)行,格子被推倒的情况为(S)时的方案数,(dp[pos][S])为所有方案中推倒树的总数,那么假设一个选字母的方案会使下一行的推倒情况为(S'),会使这一行可以推倒(k)棵树,则有转移[f[pos+1][S']+=f[pos][S]]
[dp[pos+1][S']+=f[pos][S]+k imes f[pos][S]]
最后(f[n+1][0])就是答案。这样的话能有(40)分(建议先看一下40分代码不然看不太懂AC代码的……)

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=13,M=35,L=(1<<21)+5;
int a[N][M],f[N][L],dp[N][L],g[N][L],n,m,P,lim,ans,vis[N];
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
void solve(int pos){
    fp(i,0,lim-1)if(f[pos][i]){
        fp(j,0,lim-1){
            int S=0,res=0;
            fp(k,0,m-1)vis[k]=i&(1<<k);
            fp(k,0,m-1)if(!vis[k]){
                if(j&(1<<k)){
                    if(k!=m-1&&!vis[k+1])vis[k]=vis[k+1]=1,++res;
                    else{
                        if(pos!=n)S|=(1<<k),++res;
                    }
                }else{
                    if(pos!=n)S|=(1<<k),++res;
                    else if(k!=m-1&&!vis[k+1])vis[k]=vis[k+1]=1,++res;
                }
            }
            f[pos+1][S]=add(f[pos+1][S],f[pos][i]);
            dp[pos+1][S]=add(dp[pos+1][S],mul(res,f[pos][i]));
            dp[pos+1][S]=add(dp[pos+1][S],dp[pos][i]);
        }
    }
}
int main(){
//  freopen("testdata.in","r",stdin);
    freopen("bear.in","r",stdin);
    freopen("bear.out","w",stdout);
    scanf("%d%d%d",&n,&m,&P),lim=(1<<m);
    f[1][0]=1,dp[1][0]=0;
    fp(i,1,n)solve(i);
    printf("%d
",dp[n+1][0]);
}

然后我们发现复杂度高的主要原因是因为行数太多,不过列数很少,那么我们可以对列进行状压。然而这样的话会不符合推倒的顺序。

我们考虑每一条副对角线,这条副对角线上肯定是从右上到左下的推倒顺序,于是我们可以对每一条副对角线进行状压,因为副对角线上元素个数为(min(n,m)),所以时间复杂度没问题

信心满满的交上去结果只有(70)分,因为按上面那种方式枚举行的推倒情况和行的字母不太好,对于那些已经被推倒的格子,它们不管怎么选都没有影响,所以我们可以只枚举那些没有被推倒的格子,那些已经被推倒的格子直接把贡献加上去就可以了,这样的话复杂度就是(O(3^n imes)乱七八糟的常数())

还是一句话,注意细节

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=55,M=35,L=(1<<12)+5;
int a[N][M],f[N][L],dp[N][L],n,m,P,ans,vis[N];
int id[N][M],sz[L],bin[N];
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
void solve(int pos){
    int cnt=pos-max(0,pos-n)-max(0,pos-m);
    int stx,sty,edx,edy,dx,dy;
    if(pos<=m)stx=pos,sty=1;
        else stx=m,sty=pos-m+1;
    if(pos<=n)edx=1,edy=pos;
        else edx=pos-n+1,edy=n;
    int qaq=pos+1>m,c=pos+1-max(0,pos+1-n)-max(0,pos+1-m);
    int lim=(1<<cnt)-1;
    fp(i,0,(1<<cnt)-1)if(f[pos][i]){
        int T=lim^i,p=bin[sz[i]],flag=-2;
        for(R int j=T;flag+=(j==T);j=(j-1)&T){
            int res=0,S=0;
            fp(k,0,c-1)vis[k]=0;
            dx=stx,dy=sty;
            fp(k,0,cnt-1){
                if(!(i&(1<<k))){
                    if(j&(1<<k)){
                        if(dx!=m&&!vis[k-qaq])vis[k-qaq]=1,++res,S|=(1<<(k-qaq));
                        else if(dy!=n)vis[k+1-qaq]=1,++res,S|=(1<<(k-qaq+1));
                    }else{
                        if(dy!=n)vis[k+1-qaq]=1,++res,S|=(1<<(k-qaq+1));
                        else if(dx!=m&&!vis[k-qaq])vis[k-qaq]=1,++res,S|=(1<<(k-qaq));
                    }
                }--dx,++dy;
            }
            f[pos+1][S]=add(f[pos+1][S],mul(f[pos][i],p));
            dp[pos+1][S]=add(dp[pos+1][S],mul(mul(f[pos][i],res),p));
            dp[pos+1][S]=add(dp[pos+1][S],mul(dp[pos][i],p));
        }
    }
}
int main(){
//  freopen("testdata.in","r",stdin);
    freopen("bear.in","r",stdin);
    freopen("bear.out","w",stdout);
    scanf("%d%d%d",&n,&m,&P);
    fp(i,1,(1<<(min(n,m)))-1)sz[i]=sz[i>>1]+(i&1);
    bin[0]=1;fp(i,1,30)bin[i]=mul(bin[i-1],2);
    f[1][0]=1,dp[1][0]=0;
    fp(i,1,n+m-2)solve(i);
    printf("%d
",mul(add(dp[n+m-1][0],dp[n+m-1][1]),2));
}

以上是关于jzoj5990. 北大2019冬令营模拟2019.1.6Bear (状压dp)的主要内容,如果未能解决你的问题,请参考以下文章

jzoj6004. PKUWC2019模拟2019.1.17集合 (组合数学)

jzoj6002. PKUWC2019模拟2019.1.15Permutation (组合数)

jzoj6009. THUWC2019模拟2019.1.18Counting (dp)

纪中模拟2019.08.17JZOJ3503粉刷

[jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)

纪中模拟2019.08.03JZOJ1308取数游戏