[POI2007]ZAP-Queries

Posted lcxer

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[POI2007]ZAP-Queries相关的知识,希望对你有一定的参考价值。

[POI2007]ZAP-Queries

题意简述:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。

Solution

很显然这是一个莫比乌斯反演题。
[ ans=sum_{i=1}^{a}sum_{j=1}^{b}[gcd(i,j)=d] ]
然后我们设
[ f(d)=ans=sum_{i=1}^{a}sum_{j=1}^{b}[gcd(i,j)=d]g(x)=sum_{x|d}f(d) ]

[ f(x)=sum_{x|d}mu(frac{d}{x})g(d) ]
因为
[ g(x)=sum_{i=1}^{a}sum_{i=1}^{b}[x|gcd(i,j)]=sum_{i=1}^{a/x}sum_{i=1}^{b/x}[1|gcd(i,j)]=frac{a}{x}frac{b}{x} ]
然后可以(f(x))可以变成这样
[ f(x)=sum_{x|d}mu(frac{d}{x})frac{a}{d}frac{b}{d} ]
我们设(t=frac{d}{x}),(f(x))就成了这样
[ f(x)=sum_{t=1}^{min(a,b)}mu(t)frac{a}{dx}frac{b}{dx} ]
此时(f(x))已经可以(O(n))计算了,但是由于多组询问,还需要采取数论分块的方式将时间复杂度优化到(O(sqrt{n}))

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
void read(int &x) {
    char ch; bool ok;
    for(ok=0,ch=getchar(); !isdigit(ch); ch=getchar()) if(ch=='-') ok=1;
    for(x=0; isdigit(ch); x=x*10+ch-'0',ch=getchar()); if(ok) x=-x;
}
#define rg register
const int maxn=5e4;long long ans;
int n,m,d,mu[maxn],prime[maxn],T,tot;bool vis[maxn];
void prepare()
{
    mu[1]=1;
    for(rg int i=2;i<=maxn;i++)
    {
        if(!vis[i])prime[++tot]=i,mu[i]=-1;
        for(rg int j=1;j<=tot&&prime[j]*i<=maxn;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j])mu[i*prime[j]]=-mu[i];
            else {mu[i*prime[j]]=0;break;}
        }
    }
    for(rg int i=1;i<=maxn;i++)mu[i]+=mu[i-1];
}
int main()
{
    read(T);prepare();
    while(T--)
    {
        read(n),read(m),read(d);if(n>m)swap(n,m);
        ans=0;
        for(rg int i=1,j;i<=n;i=j+1)
        {
            j=min(n/(n/i),m/(m/i));
            long long t=1ll*(n/i/d)*(m/i/d);
            ans+=t*(mu[j]-mu[i-1]);
        }
        printf("%lld
",ans);
    }
}

以上是关于[POI2007]ZAP-Queries的主要内容,如果未能解决你的问题,请参考以下文章

[POI2007]ZAP-Queries

[POI2007]ZAP-Queries

[Luogu3455][POI2007]ZAP-Queries

刷题洛谷 P3455 [POI2007]ZAP-Queries

Luogu3455POI2007ZAP-Queries(莫比乌斯反演)

[POI2007]ZAP-Queries