P2770 航空路线问题

Posted olinr

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P2770 航空路线问题相关的知识,希望对你有一定的参考价值。

(color{#0066ff}{题目描述})

给定一张航空图,图中顶点代表城市,边代表 2 城市间的直通航线。现要求找出一条满足下述限制条件的且途经城市最多的旅行路线。

(1)从最西端城市出发,单向从西向东途经若干城市到达最东端城市,然后再单向从东向西飞回起点(可途经若干城市)。

(2)除起点城市外,任何城市只能访问 1 次。

对于给定的航空图,试设计一个算法找出一条满足要求的最佳航空旅行路线。

(color{#0066ff}{输入格式})

第 1 行有 2 个正整数 N 和 V,N 表示城市数,N<100,V 表示直飞航线数。

接下来的 N 行中每一行是一个城市名,可乘飞机访问这些城市。城市名出现的顺序是从西向东。也就是说,设 i,j 是城市表列中城市出现的顺序,当 i>j 时,表示城市 i 在城市 j 的东边,而且不会有 2 个城市在同一条经线上。城市名是一个长度不超过15 的字符串,串中的字符可以是字母或阿拉伯数字。例如,AGR34 或 BEL4。

再接下来的 V 行中,每行有 2 个城市名,中间用空格隔开,如 city1 city2 表示 city1到 city2 有一条直通航线,从 city2 到 city1 也有一条直通航线。

(color{#0066ff}{输出格式})

文件第 1 行是旅行路线中所访问的城市总数 M。 接下来的 M+1 行是旅行路线的城市名,每行写 1 个城市名。首先是出发城市名,然后按访问顺序列出其它城市名。 注意,最后 1 行(终点城市)的城市名必然是出发城市名。如果问题无解,则输出“No Solution!”。

(color{#0066ff}{输入样例})

8 9
Vancouver
Yellowknife
Edmonton
Calgary
Winnipeg
Toronto
Montreal
Halifax
Vancouver Edmonton
Vancouver Calgary
Calgary Winnipeg
Winnipeg Toronto
Toronto Halifax
Montreal Halifax
Edmonton Montreal
Edmonton Yellowknife
Edmonton Calgary

(color{#0066ff}{输出样例})

7
Vancouver
Edmonton
Montreal
Halifax
Toronto
Winnipeg
Calgary
Vancouver 

(color{#0066ff}{数据范围与提示})

有spj

(color{#0066ff}{题解})

题意就是求两条不相交的从1-n的路径,使得经过的点尽可能多

所以,若本图合法,则跑完最大流一定(leq 2)

跑完就知道走了哪些点

因为要使路径最长

所以跑费用流,对边赋权为1跑最长路

每个点要拆点,拆成的两个点连权为1的边

s,t作为起点终点,再练一条权为0的边

对于图中所给边,直接连权为0的边就行

最后重新建图,dfs

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<queue>
#include<string>
#define _ 0
#define LL long long
inline LL in()
{
    LL x=0,f=1; char ch;
    while(!isdigit(ch=getchar()))(ch=='-')&&(f=-f);
    while(isdigit(ch)) x=x*10+(ch^48),ch=getchar();
    return x*f;
}
const int inf=0x7fffffff;
int n,v,s,t,cnt=1;
std::queue<int> q;
struct node
{
    int to,dis,nxt,can;
    node(int to=0,int dis=0,int nxt=0,int can=0):to(to),dis(dis),nxt(nxt),can(can){}
}e[1050500];
int dis[1200],change[1200],head[1200],road[1200];
bool vis[1200],flag;
std::map<std::string,int> mp;
std::string f[1200],ss1,ss2;
int aa[1200],bb[1200];
int h[1200],st[1200],top;
inline void add(int from,int to,int dis,int can)
{
    e[++cnt]=node(to,dis,head[from],can);
    head[from]=cnt;
}
inline void link(int from,int to,int dis,int can)
{
    add(from,to,dis,can);
    add(to,from,-dis,0);
}
inline bool spfa()
{
    for(int i=1;i<=n<<1;i++) dis[i]=-inf,change[i]=inf;
    dis[s]=0;
    q.push(s);
    while(!q.empty())
    {
        int tp=q.front(); q.pop();
        vis[tp]=false;
        for(int i=head[tp];i;i=e[i].nxt)
        {
            int go=e[i].to;
            if(dis[go]<dis[tp]+e[i].dis&&e[i].can>0)
            {
                dis[go]=dis[tp]+e[i].dis;
                change[go]=std::min(change[tp],e[i].can);
                road[go]=i;
                if(!vis[go]) vis[go]=true,q.push(go);
            }
        }
    }
    return change[t]!=inf;
}
inline void add(int from,int to)
{
    e[++cnt]=node(to,0,h[from],0);
    h[from]=cnt;
}
inline void dfs(int x)
{
    st[++top]=x;
    vis[x]=1;
    for(int i=h[x];i;i=e[i].nxt)
    {
        int go=e[i].to;
        if(!vis[go]) dfs(go);
    }
}
inline void mcmf()
{
    int flow=0;
    int cost=0;
    while(spfa())
    {
        flow+=change[t];
        cost+=change[t]*dis[t];
        for(int i=t;i!=s;i=e[road[i]^1].to)
        {
            e[road[i]].can-=change[t];
            e[road[i]^1].can+=change[t];
        }
    }
    if(cost==2)
    {
        printf("2
");
        std::cout<<f[1]<<'
'<<f[n]<<'
'<<f[1];
    }
    else if(flow==2)
    {
        printf("%d
",cost);
        for(int i=1;i<=v;i++)
            for(int j=head[aa[i]+n];j;j=e[j].nxt)
                if(e[j].to==bb[i]&&!e[j].can)
                    add(aa[i],bb[i]),add(bb[i],aa[i]);
        dfs(s);
        for(int i=1;i<=top;i++) std::cout<<f[st[i]]<<'
';
        std::cout<<f[1];
    }
    else return (void)(printf("No Solution!")); 
}
int main()
{
    n=in(),v=in();
    s=1,t=n*2;
    for(int i=1;i<=n;i++)
    {
        std::cin>>f[i];
        mp[f[i]]=i;
        link(i,i+n,1,1);
    }
    link(s,s+n,0,1);
    link(n,n+n,0,1);
    for(int i=1;i<=v;i++)
    {   
        std::cin>>ss1>>ss2;
        if(mp[ss1]>mp[ss2]) std::swap(ss1,ss2);
        aa[i]=mp[ss1],bb[i]=mp[ss2];
        link(mp[ss1]+n,mp[ss2],0,1);
    }
    mcmf();
    return 0;
}

以上是关于P2770 航空路线问题的主要内容,如果未能解决你的问题,请参考以下文章

网络流24题-航空路线问题

航空路线问题(dp解法)

网络流24题 洛谷 2770 航空路线问题

网络流24题No.11(航空路线问题 最长不相交路径 最大费用流)

[网络流24题] 航空路线问题

[luoguP2770] 航空路线问题(最小费用最大流)