Tc605

Posted wolfycz

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tc605相关的知识,希望对你有一定的参考价值。

Description
最初你有一个长度为 N 的数字序列 A。为了方便起见,序列 A 是一个排列。
你可以操作最多 K 次。每一次操作你可以先选定一个 A 的一个子串,然后将这个子串的数字全部变成原来这个子串的最大值。
问最终有几种可能的数字序列。答案对 1e9+7 取模。

Input
第一行两个数 N 和 K。第二行 N 个数,描述一个排列 A。
N,K<=500,
有6组数据N>100,有梯度

Output
输出一个数,表示答案在模域下的值。

Sample Input
3 2
3 1 2

Sample Output
4

对于第(i)个数,我们找到(ls)满足(A_kleqslant A_i,(lsleqslant kleqslant i))(rs)类似,这样我们可以把其看做一个区间,题目就变成了选取一些区间,覆盖整个序列的方案数

我们用(f[i][j])表示覆盖到第(i)个位置,用了(j)个区间的方案数,那么对于(lsleqslant ileqslant rs),用(sumlimits_{k=ls-1}^{i-1}f[k][j-1])更新即可,可以前缀和优化

/*problem from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
    static char buf[1000000],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
    int x=0,f=1; char ch=gc();
    for (;ch<'0'||ch>'9';ch=gc())   if (ch=='-')    f=-1;
    for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
    return x*f;
}
inline int read(){
    int x=0,f=1; char ch=getchar();
    for (;ch<'0'||ch>'9';ch=getchar())  if (ch=='-')    f=-1;
    for (;ch>='0'&&ch<='9';ch=getchar())    x=(x<<3)+(x<<1)+ch-'0';
    return x*f;
}
inline void print(int x){
    if (x<0)    putchar('-');
    if (x>9)    print(x/10);
    putchar(x%10+'0');
}
const int N=5e2,p=1e9+7;
int v[N+10],f[N+10][N+10];
int main(){
    int n=read(),m=read(),Ans=0;
    for (int i=1;i<=n;i++)  v[i]=read();
    f[0][0]=1;
    for (int i=1,ls,rs;i<=n;i++){
        for (ls=i;ls>=1&&v[ls]<=v[i];ls--);ls++;
        for (rs=i;rs<=n&&v[rs]<=v[i];rs++);rs--;
        for (int j=i;~j;j--){
            f[i][j]=(f[i][j]+f[i-1][j])%p;
            if (j){
                int sum=0;
                for (int k=ls;k<=rs;k++){
                    sum=(sum+f[k-1][j-1])%p;
                    f[k][j]=(f[k][j]+sum)%p;
                }
                f[i][j]=(f[i][j]-f[i-1][j-1]+p)%p;
            }
        }
    }
    for (int i=0;i<=m;i++)  Ans=(Ans+f[n][i])%p;
    printf("%d
",Ans);
    return 0;
}

以上是关于Tc605的主要内容,如果未能解决你的问题,请参考以下文章

Tc605

bzoj 4621: Tc605 动态规划

bzoj4621: Tc605

BZOJ 4621: Tc605

谷歌地图的“错误膨胀类片段”

605. 种花问题