CQOI2015选数

Posted emiya-wjk

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CQOI2015选数相关的知识,希望对你有一定的参考价值。

题面

Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。

你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

Sample Input

2 2 2 4

Sample Output

3

Hint

【样例解释】

所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)

其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)

【数据范围】

对于30%的数据,N≤5,H-L≤5

对于100%的数据,1≤N,K≤10^9,1≤L≤H≤10^9,H-L≤10^5

题目分析

(r=lfloorfrac HK floor,l=lfloorfrac {L-1}K floor)

根据套路:(displaystyle ans=sum_{d=1}^rmu(d)(lfloorfrac rd floor-lfloorfrac ld floor)^N)

由于(r)可能很大,需要用杜教筛处理(mu)的前缀和。


杜教筛:
[ egin{split} (g*f)(i)&=sum_{d|i}g(d)f(frac id)\Rightarrow g(1)S(n)&=sum_{i=1}^n(g*f)(i)-sum_{i=2}^ng(i)S(frac ni) end{split} ]

其中,(S(x))(f())的前缀和。

这次,我们的(f)(mu),根据杜教筛的套路,取(g(x)=1)
[ egin{split} S(n)=1-sum_{i=2}^nS(frac ni) end{split} ]

可以用线性筛预处理一部分(mu)的前缀和,剩下的用杜教筛记忆化搜索即可。

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<map>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=1e7+5,M=1e7,mod=1000000007;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int mu[N],prime[N];
bool vis[N];
map<int,int>smu;
int Smu(int x){
    if(x<=M)return mu[x];
    if(smu[x])return smu[x];
    int ret=1;
    for(int l=2,r;l<=x;l=r+1){
        r=x/(x/l);
        ret-=(r-l+1)*Smu(x/l);
    }
    return smu[x]=ret;
} 
LL ksm(LL x,LL k){
    LL ret=1;
    while(k){
        if(k&1)ret=ret*x%mod;
        x=x*x%mod,k>>=1;
    }
    return ret;
}
int main(){
    mu[1]=1;
    for(int i=2;i<=M;i++){
        if(!vis[i])prime[++prime[0]]=i,mu[i]=-1;
        for(int j=1;j<=prime[0]&&i*prime[j]<=M;j++){
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)break;
            mu[i*prime[j]]=-mu[i];
        }
        mu[i]+=mu[i-1];
    }
    int n=Getint(),K=Getint(),L=(Getint()-1)/K,R=Getint()/K; 
    int ans=0;
    for(int l=1,r;l<=R;l=r+1){
        r=R/(R/l);
        if(l<=L)r=min(r,L/(L/l));
        ans=(ans+1ll*(Smu(r)-Smu(l-1))*ksm(R/l-L/l,n)%mod)%mod;
    }
    cout<<(ans+mod)%mod;
    return 0;
}

以上是关于CQOI2015选数的主要内容,如果未能解决你的问题,请参考以下文章

bzoj3930[CQOI2015]选数 容斥原理

BZOJ 3930: [CQOI2015]选数

「CQOI2015」选数

BZOJ3930: [CQOI2015]选数

[CQOI2015]选数

BZOJ 3930 CQOI2015 选数