泰坦尼克号预测生还案例
Posted always-fight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了泰坦尼克号预测生还案例相关的知识,希望对你有一定的参考价值。
一、背景
Titanic: Machine Learning from Disaster-https://www.kaggle.com/c/titanic/data,必须先登录kaggle
-
就是那个大家都熟悉的『Jack and Rose』的故事,豪华游艇倒了,大家都惊恐逃生,可是救生艇的数量有限,无法人人都有,副船长发话了『 lady and kid first!』,所以是否获救其实并非随机,而是基于一些背景有rank先后的。
-
训练和测试数据是一些乘客的个人信息以及存活状况,要尝试根据它生成合适的模型并预测其他人的存活状况。
观察train数据发现总共有12列,其中Survived字段表示的是该乘客是否获救,其余都是乘客的个人信息,包括:
- PassengerId => 乘客ID
- Pclass => 乘客等级(1/2/3等舱位),1st-Upper,2nd-Middle,3rd-Lower
- Name => 乘客姓名
- Sex => 性别
- Age => 年龄
- SibSp => 同船的堂兄弟/妹个数
- Parch => 同船的父母与小孩个数
- Ticket => Ticket number
- Fare => 票价
- Cabin => Cabin number
- Embarked => 登船港口:C = Cherbourg, Q = Queenstown, S = Southampton
其中测试集示例如下:
二、代码分析-参考别人的决策树相关算法——XGBoost原理分析及实例实现(三)
2.1 查看数据的整体信息
可以看看哪些各个列变量的缺失值情况,比如Age,Cabin
import pandas as pd import numpy as np train_file = "train.csv" test_file = "test.csv" test_result_file = "gender_submission.csv" train = pd.read_csv(train_file) test = pd.read_csv(test_file) test_y = pd.read_csv(test_result_file)#test也有标签,用于核对模型对test数据预测的结果好坏 full_data = [train,test] print(train.info()) ‘‘‘ <class ‘pandas.core.frame.DataFrame‘> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): PassengerId 891 non-null int64 Survived 891 non-null int64 Pclass 891 non-null int64 Name 891 non-null object Sex 891 non-null object Age 714 non-null float64 SibSp 891 non-null int64 Parch 891 non-null int64 Ticket 891 non-null object Fare 891 non-null float64 Cabin 204 non-null object Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.6+ KB ‘‘‘
2.2 根据train.csv中各个Variable的取值和特性进行数据处理
主要查看数据的各个Variable对Survived的影响来确定是否该Variable对生还有影响
1.PassengerId 和 Survived:PassengerId是各个乘客的ID,每个ID号各不相同,基本没有什么数据挖掘意义,对需要预测的存活性几乎没有影响。
2.Pclass:为船票类型,离散数据(不需要进行特别处理),没有缺失值。该变量的取值情况如下
###### in print (train[‘Pclass‘].value_counts(sort=False).sort_index()) ###### out 1 216 2 184 3 491 ###### Pclass和Survived的影响 #计算出每个Pclass属性的取值中存活的人的比例 print train[[‘Pclass‘,‘Survived‘]].groupby(‘Pclass‘,as_index=False).mean() #巧妙的利用groupby().mean()函数,如Pclass == 1中有4个1(存活),1个0(死亡),则mean()后4个1的和/5个 = 0.8 ###### out Pclass Survived 0 1 0.629630 1 2 0.472826 2 3 0.242363
从输出的生还率可以看出,不同的Pclass类型对生还率影响还是很大的,所以选取该属性作为最终的模型的特征之一,取值为1,2,3
3.Sex 性别,连续型数据特征,没有缺失值。该变量的取值情况如下
###### in print (train[‘Sex‘].value_counts(sort=False).sort_index()) ###### out female 314 male 577 ###### Sex和Survived的影响 #计算出每个Sex属性的取值中存活的人的比例 print train[[‘Sex‘,‘Survived‘]].groupby(‘Sex‘,as_index=False).mean() ###### out Sex Survived 0 female 0.742038 1 male 0.188908
从输出的生还率可以看出,不同的Sex类型对生还率影响还是很大的,所以选取该属性作为最终的模型.对于字符串数据特征值的处理,可以将两个字符串值映射到两个数值0,1上。
4.Age 年龄是连续型数据,该属性包含较多的缺失值,不宜删除缺失值所在的行的数据记录。此处不仅需要对缺失值进行处理,而且需要对该连续型数据进行处理。
对于该属性的缺失值处理:
方法一,默认填充值的范围[(mean - std) ,(mean + std)]。
方法二,将缺失的Age当做label,将其他列的属性当做特征,通过已有的Age的记录训练模型,来预测缺失的Age值。
对该连续型数据进行处理:常用的方法有两种:
方法一,等距离划分。
方法二,通过卡方检验/信息增益/GINI系数寻找差异较大的分裂点
###对于该属性的缺失值处理方式一,方式二在最终的代码仓库中 for dataset in full_data: age_avg = dataset[‘Age‘].mean() age_std = dataset[‘Age‘].std() age_null_count = dataset[‘Age‘].isnull().sum() age_default_list = np.random.randint(low=age_avg-age_std,high=age_avg+age_std,size=age_null_count) dataset[‘Age‘][np.isnan(dataset[‘Age‘])] = age_default_list dataset[‘Age‘] = dataset[‘Age‘].astype(int) ###对该连续型数据进行处理方式二 train[‘CategoricalAge‘] = pd.cut(train[‘Age‘], 5) print (train[[‘CategoricalAge‘, ‘Survived‘]].groupby([‘CategoricalAge‘], as_index=False).mean()) ###### out CategoricalAge Survived 0 (-0.08, 16.0] 0.532710 1 (16.0, 32.0] 0.360802 2 (32.0, 48.0] 0.360784 3 (48.0, 64.0] 0.434783 4 (64.0, 80.0] 0.090909
可以看出对连续型特征Age离散化处理后,各个年龄阶段的存活率还是有差异的,所以可以选取CategoricalAge作为最终模型的一个特征
5.SibSp and Parch:SibSp和Parch分别为同船的兄弟姐妹和父母子女数,离散数据,没有缺失值。于是可以根据该人的家庭情况组合出不同的特征
###### SibSp对Survived的影响 print train[[‘SibSp‘,‘Survived‘]].groupby(‘SibSp‘,as_index=False).mean() ###### Parch对Survived的影响 print train[[‘Parch‘,‘Survived‘]].groupby(‘Parch‘,as_index=False).mean() ###### Parch和SibSp组合对Survived的影响 for dataset in full_data: dataset[‘FamilySize‘] = dataset[‘SibSp‘] + dataset[‘Parch‘] + 1 print (train[[‘FamilySize‘, ‘Survived‘]].groupby([‘FamilySize‘], as_index=False).mean()) ###### 是否为一个人IsAlone对Survived的影响 train[‘IsAlone‘] = 0 train.loc[train[‘FamilySize‘]==1,‘IsAlone‘] = 1 #或者通过下面的代码来个Alone赋值为1 train[‘IsAlone‘][train[‘FamilySize‘] == 1] = 1 print (train[[‘IsAlone‘, ‘Survived‘]].groupby([‘IsAlone‘], as_index=False).mean()) ###### out 1 SibSp Survived 0 0 0.345395 1 1 0.535885 2 2 0.464286 3 3 0.250000 4 4 0.166667 5 5 0.000000 6 8 0.000000 ###### out 2 Parch Survived 0 0 0.343658 1 1 0.550847 2 2 0.500000 3 3 0.600000 4 4 0.000000 5 5 0.200000 6 6 0.000000 ###### out 3 0 1 0.303538 1 2 0.552795 2 3 0.578431 3 4 0.724138 4 5 0.200000 5 6 0.136364 6 7 0.333333 7 8 0.000000 8 11 0.000000 ###### out 4 IsAlone Survived 0 0 0.505650 1 1 0.303538
从输出的生还率可以看出,可以选取的模型特征有Parch和SibSp组合特征FamilySize,Parch,SibSp,IsAlone该四个特征的取值都为离散值
6.Ticket和Cabin:Ticket为船票号码,每个ID的船票号不同,难以进行数据挖掘,所以该列可以舍弃。Cabin为客舱号码,并且对于891条数据记录来说,其缺失值较多,缺失巨大,难以进行填充或者说进行缺失值补充带来的噪音将更多,所以考虑放弃该列
7.Fare:Fare为船票售价,连续型数据,没有缺失值,需要对该属性值进行离散化处理
for dataset in full_data: dataset[‘Fare‘] = dataset[‘Fare‘].fillna(train[‘Fare‘].median()) train[‘CategoricalFare‘] = pd.qcut(train[‘Fare‘],6) print (train[[‘CategoricalFare‘, ‘Survived‘]].groupby([‘CategoricalFare‘], as_index=False).mean()) ###### out CategoricalFare Survived 0 (-0.001, 7.775] 0.205128 1 (7.775, 8.662] 0.190789 2 (8.662, 14.454] 0.366906 3 (14.454, 26.0] 0.436242 4 (26.0, 52.369] 0.417808 5 (52.369, 512.329] 0.697987
可以看出对连续型特征Fare离散化处理后,各个票价阶段的存活率还是有差异的,所以可以选取CategoricalFare作为最终模型的一个特征。此时分为了6个等样本数阶段
8.Embarked:Embarked是终点城市,字符串型特征值,缺失数极小,所以这里考虑使用该属性最多的值填充
print (train[‘Embarked‘].value_counts(sort=False).sort_index()) ###### out C 168 Q 77 S 644 Name: Embarked, dtype: int64 #### 填充和探索Embarked对Survived的影响 for data in full_data: data[‘Embarked‘] = data[‘Embarked‘].fillna(‘S‘) print (train[‘Embarked‘].value_counts(sort=False).sort_index()) print (train[[‘Embarked‘, ‘Survived‘]].groupby([‘Embarked‘], as_index=False).mean()) ###### out1 C 168 Q 77 S 646 Name: Embarked, dtype: int64 Embarked Survived 0 C 0.553571 1 Q 0.389610 2 S 0.339009
可以看出不同的Embarked类型对存活率的影响有差异,所以可以选择该列作为最终模型的特征,由于该属性的值是字符型,还需要进行映射处理或者one-hot处理。
9.Name:Name为姓名,字符型特征值,没有缺失值,需要对字符型特征值进行处理。但是观察到Name的取值都是不相同,但其中发现Name的title name是存在类别的关系的。于是可以对Name进行提取出称呼这一类别title name
import re def get_title_name(name): title_s = re.search(‘ ([A-Za-z]+).‘, name) if title_s: return title_s.group(1) return "" for dataset in full_data: dataset[‘TitleName‘] = dataset[‘Name‘].apply(get_title_name) print(pd.crosstab(train[‘TitleName‘],train[‘Sex‘])) ###### out Sex female male TitleName Capt 0 1 Col 0 2 Countess 1 0 Don 0 1 Dr 1 6 Jonkheer 0 1 Lady 1 0 Major 0 2 Master 0 40 Miss 182 0 Mlle 2 0 Mme 1 0 Mr 0 517 Mrs 125 0 Ms 1 0 Rev 0 6 Sir 0 1 ####可以看出不同的titlename中男女还是有区别的。进一步探索titlename对Survived的影响。 ####看出上面的离散取值范围还是比较多,所以可以将较少的几类归为一个类别。 train[‘TitleName‘] = train[‘TitleName‘].replace(‘Mme‘, ‘Mrs‘) train[‘TitleName‘] = train[‘TitleName‘].replace(‘Mlle‘, ‘Miss‘) train[‘TitleName‘] = train[‘TitleName‘].replace(‘Ms‘, ‘Miss‘) train[‘TitleName‘] = train[‘TitleName‘].replace([‘Lady‘, ‘Countess‘,‘Capt‘, ‘Col‘, ‘Don‘, ‘Dr‘, ‘Major‘, ‘Rev‘, ‘Sir‘, ‘Jonkheer‘, ‘Dona‘], ‘Other‘) print (train[[‘TitleName‘, ‘Survived‘]].groupby(‘TitleName‘, as_index=False).mean()) ###### out1 TitleName Survived 0 Master 0.575000 1 Miss 0.702703 2 Mr 0.156673 3 Mrs 0.793651 4 Other 0.347826
可以看出TitleName对存活率还是有影响差异的,TitleName总共为了5个类别:Mrs,Miss,Master,Mr,Other。
2.3 特征提取总结
此赛题是计算每一个属性与响应变量label的影响(存活率)来查看是否选择该属性作为最后模型的输入特征。最后选取出的模型输入特征有Pclass,Sex,CategoricalAge,FamilySize,Parch,SibSp,IsAlone,CategoricalFare,Embarked,TitleName,最后对上述分析进行统一的数据清洗,将train.csv和test.csv统一进行处理,得出新的模型训练样本集。
三、XGBoost模型训练
3.1数据清洗和特征选择
此步骤主要是根据3中的数据分析来进行编写的。着重点Age的缺失值使用了两种方式进行填充。均值和通过其他清洗的数据特征使用随机森林预测缺失值两种方式。
def Passenger_sex(x): sex = {‘female‘:0, ‘male‘:1} return sex[x] def Passenger_Embarked(x): Embarked = {‘S‘:0, ‘C‘:1, ‘Q‘:2} return Embarked[x] def Passenger_TitleName(x): TitleName = {‘Mr‘:0,‘Miss‘:1, ‘Mrs‘:2, ‘Master‘:3, ‘Other‘:4} return TitleName[x] def get_title_name(name): title_s = re.search(‘ ([A-Za-z]+).‘, name) if title_s: return title_s.group(1) return "" def data_feature_engineering(full_data,age_default_avg=True,one_hot=True): """ :param full_data:全部数据集包括train,test :param age_default_avg:age默认填充方式,是否使用平均值进行填充 :param one_hot: Embarked字符处理是否是one_hot编码还是映射处理 :return: 处理好的数据集 """ for dataset in full_data: # Pclass、Parch、SibSp不需要处理 # sex 0,1 dataset[‘Sex‘] = dataset[‘Sex‘].map(Passenger_sex).astype(int) # FamilySize dataset[‘FamilySize‘] = dataset[‘SibSp‘] + dataset[‘Parch‘] + 1 # IsAlone dataset[‘IsAlone‘] = 0 isAlone_mask = dataset[‘FamilySize‘] == 1 dataset.loc[isAlone_mask, ‘IsAlone‘] = 1 # Fare 离散化处理,6个阶段 fare_median = dataset[‘Fare‘].median() dataset[‘CategoricalFare‘] = dataset[‘Fare‘].fillna(fare_median) dataset[‘CategoricalFare‘] = pd.qcut(dataset[‘CategoricalFare‘],6,labels=[0,1,2,3,4,5]) # Embarked映射处理,one-hot编码,极少部分缺失值处理 dataset[‘Embarked‘] = dataset[‘Embarked‘].fillna(‘S‘) dataset[‘Embarked‘] = dataset[‘Embarked‘].astype(str) if one_hot: # 因为OneHotEncoder只能编码数值型,所以此处使用LabelBinarizer进行独热编码 Embarked_arr = LabelBinarizer().fit_transform(dataset[‘Embarked‘]) dataset[‘Embarked_0‘] = Embarked_arr[:, 0] dataset[‘Embarked_1‘] = Embarked_arr[:, 1] dataset[‘Embarked_2‘] = Embarked_arr[:, 2] dataset.drop(‘Embarked‘,axis=1,inplace=True) else: # 字符串映射处理 dataset[‘Embarked‘] = dataset[‘Embarked‘].map(Passenger_Embarked).astype(int) # Name选取称呼Title_name dataset[‘TitleName‘] = dataset[‘Name‘].apply(get_title_name) dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Mme‘, ‘Mrs‘) dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Mlle‘, ‘Miss‘) dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Ms‘, ‘Miss‘) dataset[‘TitleName‘] = dataset[‘TitleName‘].replace([‘Lady‘, ‘Countess‘, ‘Capt‘, ‘Col‘, ‘Don‘, ‘Dr‘, ‘Major‘, ‘Rev‘, ‘Sir‘, ‘Jonkheer‘, ‘Dona‘], ‘Other‘) dataset[‘TitleName‘] = dataset[‘TitleName‘].map(Passenger_TitleName).astype(int) # age —— 缺失值,分段处理 if age_default_avg: # 缺失值使用avg处理 age_avg = dataset[‘Age‘].mean() age_std = dataset[‘Age‘].std() age_null_count = dataset[‘Age‘].isnull().sum() age_default_list = np.random.randint(low=age_avg - age_std, high=age_avg + age_std, size=age_null_count) dataset.loc[np.isnan(dataset[‘Age‘]), ‘Age‘] = age_default_list dataset[‘Age‘] = dataset[‘Age‘].astype(int) else: # 将age作为label,预测缺失的age # 特征为 TitleName,Sex,pclass,SibSP,Parch,IsAlone,CategoricalFare,FamileSize,Embarked feature_list = [‘TitleName‘, ‘Sex‘, ‘Pclass‘, ‘SibSp‘, ‘Parch‘, ‘IsAlone‘,‘CategoricalFare‘, ‘FamilySize‘, ‘Embarked‘,‘Age‘] if one_hot: feature_list.append(‘Embarked_0‘) feature_list.append(‘Embarked_1‘) feature_list.append(‘Embarked_2‘) feature_list.remove(‘Embarked‘) Age_data = dataset.loc[:,feature_list] un_Age_mask = np.isnan(Age_data[‘Age‘]) Age_train = Age_data[~un_Age_mask] #要训练的Age # print(Age_train.shape) feature_list.remove(‘Age‘) rf0 = RandomForestRegressor(n_estimators=60,oob_score=True,min_samples_split=10,min_samples_leaf=2, max_depth=7,random_state=10) rf0.fit(Age_train[feature_list],Age_train[‘Age‘]) def set_default_age(age): if np.isnan(age[‘Age‘]): data_x = np.array(age.loc[feature_list]).reshape(1,-1) age_v = round(rf0.predict(data_x)) #age_v = np.round(rf0.predict(data_x))[0] return age_v return age[‘Age‘] dataset[‘Age‘] = dataset.apply(set_default_age, axis=1) # pd.cut与pd.qcut的区别,前者是根据取值范围来均匀划分, # 后者是根据取值范围的各个取值的频率来换分,划分后的某个区间的频率数相同 # print(dataset.tail()) dataset[‘CategoricalAge‘] = pd.cut(dataset[‘Age‘], 5,labels=[0,1,2,3,4]) return full_data ##特征选择 def data_feature_select(full_data): """ :param full_data:全部数据集 :return: """ for data_set in full_data: drop_list = [‘PassengerId‘,‘Name‘,‘Age‘,‘Fare‘,‘Ticket‘,‘Cabin‘] data_set.drop(drop_list,axis=1,inplace=True) train_y = np.array(full_data[0][‘Survived‘]) train = full_data[0].drop(‘Survived‘,axis=1,inplace=False) # print(train.head()) train_X = np.array(train) test_X = np.array(full_data[1]) return train_X,train_y,test_X
4.2XGBoost参数介绍
要熟练的使用XGBoost库一方面需要对XGBoost原理的了解,另一方面需要对XGBoost库的API参数的了解,通用参数
booster[默认gbtree]:选择每次迭代的模型
gbtree:基于树的模型
gbliner:线性模型
nthread:[默认值为最大可能的线程数]
这个参数用来进行多线程控制,应当输入系统的核数。
如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。
booster:尽管有两种booster可供选择,这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到
learning_rate:梯度下降的学习率,一般为0.01~0.2
min_child_weight:决定最小叶子节点样本权重和,这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本;但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整
max_depth:决策树的最大深度,默认为6,这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本;需要使用CV函数来进行调优,典型值:3-10
max_leaf_nodes:树上最大的叶子数量
gamma:在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的
subsample和colsample_bytree:随机森林中的两种随机,也是XGBoost中的trick,用于防止过拟合,值为0.5~1,随机采样所占比例,随机列采样比例。
lambda:L2正则化项,可调参实现。
scale_pos_weight:在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。
学习目标函数
objective:指定分类回归问题。如binary:logistic
eval_metric:评价指标
seeds:随机数种子,调整参数时,随机取同样的样本集
#coding = utf-8 import pandas as pd import numpy as np import re from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import LabelBinarizer from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import GridSearchCV from sklearn import metrics import xgboost as xgb from xgboost.sklearn import XGBClassifier import matplotlib.pylab as plt #https://github.com/JianWenJun/MLDemo/blob/master/ML/DecisionTree/xgboost_demo.py #数据清洗和特征选择 ##此步骤主要是根据数据分析来进行编写的。着重点Age的缺失值使用了两种方式进行填充。均值和通过其他清洗的数据特征使用随机森林预测缺失值两种方式。 def data_feature_engineering(full_data, age_default_avg=True, one_hot=True): """ :param full_data:全部数据集,包括train,test :param age_default_avg: age默认填充方式,是否使用平均值进行填充 :param one_hot: Embarked字符处理是否是one_hot编码还是映射处理 :return:处理好的数据集 """ for dataset in full_data: #Pclass,Parch,SibSp不需要处理 #sex 0,1 dataset[‘Sex‘] = dataset[‘Sex‘].map(Passenger_sex).astype(int) #FamilySize dataset[‘FamilySize‘] = dataset[‘SibSp‘] + dataset[‘Parch‘] + 1 #IsAlone dataset[‘IsAlone‘] = 0 isAlone_mask = dataset[‘FamilySize‘] == 1 dataset.loc[isAlone_mask,‘IsAlone‘] = 1 #Fare离散化处理,6个阶段 fare_median = dataset[‘Fare‘].median() dataset[‘CategoricalFare‘] = dataset[‘Fare‘].fillna(fare_median) dataset[‘CategoricalFare‘] = pd.qcut(dataset[‘CategoricalFare‘],6,labels=[0,1,2,3,4,5]) #Embarked 映射处理, one-hot 编码,极少部分缺失值处理 dataset[‘Embarked‘] = dataset[‘Embarked‘].fillna(‘S‘) dataset[‘Embarked‘] = dataset[‘Embarked‘].astype(str) if one_hot: #因为OneHotEncoder只能编码数值型,所以此处使用LabelBinarizer进行独热编码 Embarked_arr = LabelBinarizer().fit_transform(dataset[‘Embarked‘]) dataset[‘Embarked_0‘] = Embarked_arr[:, 0] dataset[‘Embarked_1‘] = Embarked_arr[:, 1] dataset[‘Embarked_2‘] = Embarked_arr[:, 2] dataset.drop(‘Embarked‘, axis=1, inplace=True) else: #字符映射处理 dataset[‘Embarked‘] = dataset[‘Embarked‘].map(Passenger_Embarked).astype(int) #Name选取称呼Title_name dataset[‘TitleName‘] = dataset[‘Name‘].apply(get_title_name) dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Mme‘,‘Mrs‘) dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Mlle‘, ‘Miss‘) dataset[‘TitleName‘] = dataset[‘TitleName‘].replace(‘Ms‘, ‘Miss‘) dataset[‘TitleName‘] = dataset[‘TitleName‘].replace([‘Lady‘, ‘Countess‘, ‘Capt‘, ‘Col‘, ‘Don‘, ‘Dr‘, ‘Major‘, ‘Rev‘, ‘Sir‘, ‘Jonkheer‘, ‘Dona‘], ‘Other‘) dataset[‘TitleName‘] = dataset[‘TitleName‘].map(Passenger_TitleName).astype(int) #age 缺失值,分段处理 if age_default_avg: #缺失值使用avg处理 age_avg = dataset[‘Age‘].mean() age_std = dataset[‘Age‘].std() age_null_count = dataset[‘Age‘].isnull().sum() age_default_list = np.random.randint(low=age_avg-age_std, high=age_avg+age_std, size=age_null_count) dataset.loc[np.isnan(dataset[‘Age‘]),‘Age‘] = age_default_list dataset[‘Age‘] = dataset[‘Age‘].astype(int) else: #将age作为label,预测缺失的age #特征为TitleName,Sex,pclass,SibSP,Parch,IsAlone,CategoricalFare,FamileSize,Embarked feature_list = [‘TitleName‘, ‘Sex‘, ‘Pclass‘, ‘SibSp‘, ‘Parch‘, ‘IsAlone‘, ‘CategoricalFare‘, ‘FamilySize‘, ‘Embarked‘, ‘Age‘] if one_hot: feature_list.append(‘Embarked_0‘) feature_list.append(‘Embarked_1‘) feature_list.append(‘Embarked_2‘) feature_list.remove(‘Embarked‘) Age_data = dataset.loc[:, feature_list] un_Age_mask = np.isnan(Age_data[‘Age‘]) Age_train = Age_data[~un_Age_mask]#要训练的Age #print(Age_train.shape) feature_list.remove(‘Age‘) rf0 = RandomForestRegressor(n_estimators=60, oob_score=True, min_samples_split=10, min_samples_leaf=2, max_depth=7, random_state=10) rf0.fit(Age_train[feature_list], Age_train[‘Age‘]) def set_default_age(age): if np.isnan(age[‘Age‘]): data_x = np.array(age.loc[feature_list]).reshape(1,-1) age_v = round(rf0.predict(data_x)) return age_v return age[‘Age‘] dataset[‘Age‘] = dataset.apply(set_default_age, axis=1) # pd.cut与pd.qcut的区别,前者是根据取值范围来均匀划分 # 后者是根据取值范围的各个取值的频率来换分,划分后的某个区间的频率数相同 # print(dataset.tail()) dataset[‘CategoricalAge‘] = pd.cut(dataset[‘Age‘], 5, labels=[0,1,2,3,4]) return full_data ##特征选择 def data_feature_select(full_data): """ :param full_data:全部数据集 :return: """ for data_set in full_data: drop_list = [‘PassengerId‘, ‘Name‘, ‘Age‘, ‘Fare‘, ‘Ticket‘, ‘Cabin‘] data_set.drop(drop_list, axis=1, inplace=True) train_y = np.array(full_data[0][‘Survived‘]) train = full_data[0].drop(‘Survived‘, axis=1, inplace=False) train_X = np.array(train) test_X = np.array(full_data[1]) return train_X, train_y, test_X def Passenger_sex(x): sex = {‘female‘:0, ‘male‘:1} return sex[x] def Passenger_Embarked(x): Embarked = {‘S‘:0, ‘C‘:1, ‘Q‘:2} return Embarked[x] def Passenger_TitleName(x): TitleName = {‘Mr‘:0,‘Miss‘:1, ‘Mrs‘:2, ‘Master‘:3, ‘Other‘:4} return TitleName[x] def get_title_name(name): title_s = re.search(‘ ([A-Za-z]+).‘, name) if title_s: return title_s.group(1) return "" def modelfit(alg,dtrain_x,dtrain_y,useTrainCV=True,cv_flods=5,early_stopping_rounds=50): """ :param alg: 初始模型 :param dtrain_x:训练数据X :param dtrain_y:训练数据y(label) :param useTrainCV: 是否使用cv函数来确定最佳n_estimators :param cv_flods:交叉验证的cv数 :param early_stopping_rounds:在该数迭代次数之前,eval_metric都没有提升的话则停止 """ if useTrainCV: xgb_param = alg.get_xgb_params() xgtrain = xgb.DMatrix(dtrain_x,dtrain_y) cv_result = xgb.cv(xgb_param,xgtrain,num_boost_round = alg.get_params()[‘n_estimators‘], nfold = cv_flods, metrics = ‘auc‘, early_stopping_rounds=early_stopping_rounds) alg.set_params(n_estimators=cv_result.shape[0]) # train data alg.fit(train_X,train_y,eval_metric=‘auc‘) #predict train data train_y_pre = alg.predict(train_X) print (" Model Report") print ("Accuracy : %.4g" % metrics.accuracy_score(train_y, train_y_pre)) feat_imp = pd.Series(alg.get_booster().get_fscore()).sort_values(ascending=False) feat_imp.plot(kind = ‘bar‘,title=‘Feature Importance‘) plt.ylabel(‘Feature Importance Score‘) plt.show() def xgboost_change_param(train_X, train_y): ######Xgboost 调参######## #step1 确定学习速率和迭代次数n_estimators xgb1 = XGBClassifier(learning_rate=0.1, booster=‘gbtree‘, n_estimators=300, max_depth=4, min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8, objective=‘binary:logistic‘, nthread=2, scale_pos_weight=1, seed=10) #最佳n_estimators = 59,learning_rate=0.1 modelfit(xgb1, train_X, train_y, early_stopping_rounds=45) #step2调试的参数时min_child_weight以及max_depth param_test1 = {‘max_depth‘:range(3,8,1), ‘min_child_weight‘:range(1,6,2)} gsearch1 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1, n_estimators=59, max_depth=4, min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8, objective=‘binary:logistic‘, nthreads=2, scale_pos_weight=1,seed=10), param_grid=param_test1,scoring=‘roc_auc‘,n_jobs=1,cv=5) gsearch1.fit(train_X,train_y) print(gsearch1.best_params_, gsearch1.best_score_) #最佳max_depth = 7, min_child_weight=3 #modelfit(gsearch1.best_estimator_) 最佳模型为:gsearch1.best_estimator_ #step3 gamma参数调优 param_test2 = {‘gamma‘: [i/10.0 for i in range(0,5)]} gsearch2 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1,n_estimators=59, max_depth=7,min_child_weight=3,gamma=0, subsample=0.8,colsample_bytree=0.8, objective=‘binary:logistic‘,nthread=2, scale_pos_weight=1,seed=10), param_grid=param_test2, scoring=‘roc_auc‘, cv=5) gsearch2.fit(train_X, train_y) print(gsearch2.best_params_, gsearch2.best_score_) #最佳 gamma = 0.3 #modelfit(gsearch2, best_estimator_) #step4 调整subsample 和 colsample_bytrees参数 param_test3 = {‘subsample‘: [i/10.0 for i in range(6,10)], ‘colsample_bytree‘: [i/10.0 for i in range(6,10)]} gsearch3 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1,n_estimators=59, max_depth=7,min_child_weight=3,gamma=0.3, subsample=0.8,colsample_bytree=0.8, objective=‘binary:logistic‘,nthread=2, scale_pos_weight=1,seed=10), param_grid=param_test3, scoring=‘roc_auc‘, cv=5 ) gsearch3.fit(train_X, train_y) print(gsearch3.best_params_, gsearch3.best_score_) # 最佳‘subsample‘: 0.8, ‘colsample_bytree‘: 0.6 # step5 正则化参数调优 train_file = "C:\\Users\\Administrator\\Desktop\\python\\data\\Titanic\\train.csv" test_file = "C:\\Users\\Administrator\\Desktop\\python\\data\\Titanic\\test.csv" test_result_file = "C:\\Users\\Administrator\\Desktop\\python\\data\\Titanic\\gender_submission.csv" train = pd.read_csv(train_file) test = pd.read_csv(test_file) test_y = pd.read_csv(test_result_file) full_data = [train,test] full_data = data_feature_engineering(full_data, age_default_avg=True, one_hot=False) train_X, train_y, test_X = data_feature_select(full_data) # XGBoost调参 #xgboost_change_param(train_X, train_y) #parameters at last xgb1 = XGBClassifier(learning_rate=0.1,n_estimators=59, max_depth=7,min_child_weight=3, gamma=0.3,subsample=0.8, colsample_bytree=0.6, objective=‘binary:logistic‘, nthread=2, scale_pos_weight=1,seed=10) xgb1.fit(train_X,train_y) y_test_pre = xgb1.predict(test_X) y_test_true = np.array(test_y[‘Survived‘]) print ("the xgboost model Accuracy : %.4g" % metrics.accuracy_score(y_pred=y_test_pre, y_true=y_test_true))
Reference:
https://blog.csdn.net/u014732537/article/details/80055227
https://github.com/JianWenJun/MLDemo/blob/master/ML/DecisionTree/xgboost_demo.py
以上是关于泰坦尼克号预测生还案例的主要内容,如果未能解决你的问题,请参考以下文章