Spark算子之aggregateByKey详解

Posted itboys

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark算子之aggregateByKey详解相关的知识,希望对你有一定的参考价值。

一、基本介绍

rdd.aggregateByKey(3, seqFunc, combFunc) 其中第一个函数是初始值

3代表每次分完组之后的每个组的初始值。

seqFunc代表combine的聚合逻辑

每一个mapTask的结果的聚合成为combine

combFunc reduce端大聚合的逻辑

ps:aggregateByKey默认分组

二、源码

三、代码

from pyspark import SparkConf,SparkContext
from __builtin__ import str
conf = SparkConf().setMaster("local").setAppName("AggregateByKey")
sc = SparkContext(conf = conf)

rdd = sc.parallelize([(1,1),(1,2),(2,1),(2,3),(2,4),(1,7)],2)

def f(index,items):
    print "partitionId:%d" %index
    for val in items:
        print val
    return items
    
rdd.mapPartitionsWithIndex(f, False).count()

def seqFunc(a,b):
    print "seqFunc:%s,%s" %(a,b)
    return max(a,b) #取最大值
def combFunc(a,b):
    print "combFunc:%s,%s" %(a ,b)
    return a + b #累加起来
‘‘‘
    aggregateByKey这个算子内部肯定有分组
‘‘‘
aggregateRDD = rdd.aggregateByKey(3, seqFunc, combFunc)
rest = aggregateRDD.collectAsMap()
for k,v in rest.items():
    print k,v

sc.stop()

四、详细逻辑

技术分享图片

PS:seqFunc函数 combine篇。

3是每个分组的最大值,所以把3传进来,在combine函数中也就是seqFunc中第一次调用 3代表a,b即1,max(a,b)即3 第二次再调用则max(3.1)中的最大值3即输入值,2即b值 所以结果则为(1,3)

底下类似。combine函数调用的次数与分组内的数据个数一致。

combFunc函数 reduce聚合

在reduce端大聚合,拉完数据后也是先分组,然后再调用combFunc函数

五、结果

技术分享图片

 

以上是关于Spark算子之aggregateByKey详解的主要内容,如果未能解决你的问题,请参考以下文章

Spark算子篇 --Spark算子之combineByKey详解

Spark算子选择策略

Spark算子选择策略

Spark算子执行流程详解之八

Spark算子执行流程详解之八

Spark算子执行流程详解之五