bzoj 1023

Posted zhangleo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj 1023相关的知识,希望对你有一定的参考价值。

我说这是我们的noip互测题你信吗...

首先介绍一下仙人掌(略,参见题面)

然后我们思考一下怎么做:

首先,如果原图是一棵树,那么做法是很显然的(树上最长链嘛)

但是,图是一个仙人掌,所以树上最长链的做法有bug

所以我们考虑:是否能将树上的做法移接到仙人掌上即可

怎么移接?

我们看到,根据仙人掌的性质,如果我们对这个仙人掌搜出一棵dfs树,那么不在环上的边一定是树边

如果换一种说法,那么这种边一定是割边!

所以,如果我们把仙人掌看做树上挂着环的一种图,那么我们是可以套用树上最长链的思想,配合树形dp来解决这道题的!

举个例子:

技术分享图片

这是一棵很典型的树 

技术分享图片

 现在我引入了两条绿色的边(非树边),他就变成了一个典型的仙人掌

于是我们可以对这个仙人掌进行tarjan(很显然,它是有环的,不是吗?)

在tarjan的同时,我们对树边进行树形dp

记dp[i]表示以i为根节点且一定经过i的子树中的以i为起点的最长链长度

于是我们显然有转移:技术分享图片,其中to为i的一个子节点

可是由于它是一个仙人掌,所以存在环,我们知道,对于环,树形dp是处理不了的啊

所以我们借助tarjan进行缩点,分别处理环内和环外的点

方式:对每个点记录一个树上父节点,那么如果从某个点能直接连通到另一个点,但这个点却不是那个点的树上儿子,则说明这两点之间一定存在一个环!

(这一点很显然,对照图理解一下就好)

接下来,在环内我们需要单独处理一遍dp

处理方式待会再说

于是这道题就被分成了两部分:

①:对树部分进行dfs树形dp

②:对环部分单独dp

在树部分,结合上面提到的转移,我们有:

技术分享图片

技术分享图片

(更新答案是很显然的,因为我可没有要求答案的起点一定是u,所以自然是两条以u为起点的链通过u连起来比较长)

至于环内部分,结合我们刚才提到的判环条件,我们能很清楚的发现一件事情:

①:对于一个环内点的dp值只会影响环内点,而不会影响环外点(环外点与环内点是通过树边进行更新,不涉及环的问题)

②:但是上面这句话存在漏洞:要求这个环内点并不是环中的最高点才行!

为什么?

例:

技术分享图片

观察一下,我们能看到:底下绿色的环的dp值只有最上面的那个点才回涉及到对上半部分dp值的更新,而剩下的是没有用的

所以我们在处理每个环时,仅需处理深度最浅的点,更新他的dp值即可

但是,每个点的dp值都会对答案有贡献,因此不要忘记更新答案!

接下来的问题就好说了:如果我们记环中最高点为u,那么根据上述提到的找环的方法,我们完全可以:找到u的一个to,反复找到to的父节点,根据u为环中最高点这一性质,我们最终一定能跳到u,而所有遍历到的点就是一整个环!

在更新答案时,显然我们要找到换上两点i,j,使得dp[i]+dp[j]+dis(i,j)最大来更新ans

朴素来看,这将是个O(n^2)算法

但是我们可以利用单调队列进行优化,因为dis(i,j)根据遍历环的顺序直接可求

这样就优化成了O(n)

最后更新一遍环上最高点的dp值即可。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
struct Edge
{
    int next;
    int to;
}edge[300005];
int head[100005];
int dfn[100005];
int dep[100005];
int low[100005];
int f[100005];
int dp[100005];
int sta[100005],que[100005];
int tot,deep;
int cnt=1;
int n,m;
int ans=0;
void init()
{
    memset(head,-1,sizeof(head));
    cnt=1;
}
void add(int l,int r)
{
    edge[cnt].next=head[l];
    edge[cnt].to=r;
    head[l]=cnt++;
}
void dpit(int ed,int st)
{
    int cct=0;
    while(st!=ed)
    {
        sta[++cct]=dp[st];
        st=f[st];
    }
    sta[++cct]=dp[ed];
    for(int i=1;i<cct;i++)
    {
        sta[i+cct]=sta[i];
    }
    int head=1,tail=1;
    que[1]=1;
    for(int i=2;i<=cct+cct/2;i++)
    {
        while(head<=tail&&i-que[head]>cct/2)
        {
            head++;
        }
        ans=max(ans,sta[i]+sta[que[head]]+i-que[head]);
        while(head<=tail&&sta[que[tail]]+i-que[tail]<=sta[i])
        {
            tail--;
        }
        que[++tail]=i;
    }
    for(int i=1;i<cct;i++)
    {
        dp[ed]=max(dp[ed],sta[i]+min(i,cct-i));
    }
}
void tarjan(int rt)
{
    dfn[rt]=low[rt]=++deep;
    for(int i=head[rt];i!=-1;i=edge[i].next)
    {
        int to=edge[i].to;
        if(to==f[rt])
        {
            continue;
        }
        if(!dfn[to])
        {
            f[to]=rt;
            dep[to]=dep[rt]+1;
            tarjan(to);
            low[rt]=min(low[rt],low[to]);
            if(dfn[rt]<low[to])
            {
                ans=max(ans,dp[rt]+dp[to]+1);
                dp[rt]=max(dp[rt],dp[to]+1);
            }
        }else
        {
            low[rt]=min(low[rt],dfn[to]);
        }
        
    }
    for(int i=head[rt];i!=-1;i=edge[i].next)
    {
        int to=edge[i].to;
        if(f[to]==rt||dfn[to]<=dfn[rt])
        {
            continue;
        }
        dpit(rt,to);
    }
}
inline int read()
{
    int f=1,x=0;char ch=getchar();
    while(ch<0||ch>9){if(ch==-)f=-1;ch=getchar();}
    while(ch>=0&&ch<=9){x=x*10+ch-0;ch=getchar();}
    return x*f;
}
int main()
{
//    freopen("pianfen.in","r",stdin);
//    freopen("pianfen.out","w",stdout);
    n=read(),m=read();
    init();
    for(int i=1;i<=m;i++)
    {
        int k=read();
        int las=0;
        for(int j=1;j<=k;j++)
        {
            int x=read();
            if(!las)
            {
                las=x;
                continue;
            }
            add(x,las);
            add(las,x);
            las=x;
        }
    }
    /*for(int i=1;i<=min(n,9871);i++)
    {
        int x=read();
        if(x!=0&&x!=1)
        {
            printf("-l
");
            return 0;
        }
    }*/
    tarjan(1);
    printf("%d
",ans);
    return 0;
}

 

以上是关于bzoj 1023的主要内容,如果未能解决你的问题,请参考以下文章

bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图

BZOJ 1023SHOI 2008cactus仙人掌图

bzoj千题计划224:bzoj1023: [SHOI2008]cactus仙人掌图

bzoj 1023

BZOJ1023:[SHOI2008]仙人掌图——题解

bzoj 1023[SHOI2008]cactus仙人掌图