模型评估与选择

Posted lxp-never

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了模型评估与选择相关的知识,希望对你有一定的参考价值。

1、经验误差与过拟合

  错误率为分类错误的样本数占样本总数的比例,相应的精度=1-错误率,模型的实际预测输出与样本的真实输出之间的差异称为“误差”,模型在训练集上的误差称为“训练误差”,在新样本上的误差称为“泛化误差”。我们希望得到在新样本上表现好的学习器,也就是泛化误差小的学习器,但是并不是泛化误差越小越好,我们应该尽可能出训练样本中学出适用于所有潜在样本的“普遍规律”,然而模型把训练样本学的太好,很可能把训练完本自身的特点当做所有潜在样本都具有的一般性质,这样就导致了泛化性能下降,这种现象称为“过拟合”,相对立的是“欠拟合”,是指训练样本的一般性质尚未学好。欠拟合比较容易克制,例如在决策树学习中扩展分支、在神经网络中增加训练轮数

 

以上是关于模型评估与选择的主要内容,如果未能解决你的问题,请参考以下文章

模型评估与模型选择

周志华 《机器学习初步》模型评估与选择

周志华机器学习--模型评估与选择

模型评估与选择

模型评估与选择

模型评估与模型选择