cross-entropy(交叉熵)

Posted momo072994mlia

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了cross-entropy(交叉熵)相关的知识,希望对你有一定的参考价值。

熵其实是信息量的期望值,它是一个随机变量的确定性的度量。熵越大,变量的取值越不确定,反之就越确定

参考链接:https://blog.csdn.net/rtygbwwwerr/article/details/50778098

交叉熵是一个在ML领域经常会被提到的名词。在这篇文章里将对这个概念进行详细的分析。

1.什么是信息量?

假设X是一个离散型随机变量,其取值集合为X,概率分布函数为p(x)=Pr(X=x),xX,p(x)=Pr(X=x),x∈X,我们定义事件X=x0的信息量为: 
I(x0)=?log(p(x0)),可以理解为,一个事件发生的概率越大,则它所携带的信息量就越小,而当p(x0)=1时,熵将等于0,也就是说该事件的发生不会导致任何信息量的增加。举个例子,小明平时不爱学习,考试经常不及格,而小王是个勤奋学习的好学生,经常得满分,所以我们可以做如下假设: 
事件A:小明考试及格,对应的概率P(xA)=0.1,信息量为I(xA)=?log(0.1)=3.3219
事件B:小王考试及格,对应的概率P(xB)=0.999,信息量为I(xB)=?log(0.999)=0.0014
可以看出,结果非常符合直观:小明及格的可能性很低(十次考试只有一次及格),因此如果某次考试及格了(大家都会说:XXX竟然及格了!),必然会引入较大的信息量,对应的l值也较高。而对于小王而言,考试及格是大概率事件,在事件B发生前,大家普遍认为事件B的发生几乎是确定的,因此当某次考试小王及格这个事件发生时并不会引入太多的信息量,相应的II值也非常的低。

2.什么是熵?

那么什么又是熵呢?还是通过上边的例子来说明,假设小明的考试结果是一个0-1分布XA只有两个取值{0:不及格,1:及格},在某次考试结果公布前,小明的考试结果有多大的不确定度呢?你肯定会说:十有八九不及格!因为根据先验知识,小明及格的概率仅有0.1,90%的可能都是不及格的。怎么来度量这个不确定度?求期望!不错,我们对所有可能结果带来的额外信息量求取均值(期望),其结果不就能够衡量出小明考试成绩的不确定度了吗。 
即: 
HA(x)=?[p(xA)log(p(xA))+(1?p(xA))log(1?p(xA))]=0.4690
对应小王的熵: 
HB(x)=?[p(xB)log(p(xB))+(1?p(xB))log(1?p(xB))]=0.0114
虽然小明考试结果的不确定性较低,毕竟十次有9次都不及格,但是也比不上小王(1000次考试只有一次才可能不及格,结果相当的确定) 
我们再假设一个成绩相对普通的学生小东,他及格的概率是P(xC)=0.5,即及格与否的概率是一样的,对应的熵: 
HC(x)=?[p(xC)log(p(xC))+(1?p(xC))log(1?p(xC))]=1
其熵为1,他的不确定性比前边两位同学要高很多,在成绩公布之前,很难准确猜测出他的考试结果。 
可以看出,熵其实是信息量的期望值,它是一个随机变量的确定性的度量。熵越大,变量的取值越不确定,反之就越确定。

对于一个随机变量X而言,它的所有可能取值的信息量的期望(E[I(x)])就称为熵。 
X的熵定义为: 
H(X)=Eplog(1/p(x))=?p(x)logp(x) ,xX
如果p(x)是连续型随机变量的pdf,则熵定义为: 
H(X)=?p(x)logp(x)dx,xX
为了保证有效性,这里约定当p(x)0,p(x)logp(x)0
当X为0-1分布时,熵与概率p的关系如下图: 
技术分享图片 
可以看出,当两种取值的可能性相等时,不确定度最大(此时没有任何先验知识),这个结论可以推广到多种取值的情况。在图中也可以看出,当p=0或1时,熵为0,即此时X完全确定。 
熵的单位随着公式中log运算的底数而变化,当底数为2时,单位为“比特”(bit),底数为e时,单位为“奈特”。

3.什么是相对熵?

技术分享图片

 

4. 什么是交叉熵?

技术分享图片

 























以上是关于cross-entropy(交叉熵)的主要内容,如果未能解决你的问题,请参考以下文章

交叉熵(cross-entropy)探讨

彻底理解 softmax、sigmoid、交叉熵(cross-entropy)

sklearn基于make_scorer函数为Logistic模型构建自定义损失函数+代码实战(二元交叉熵损失 binary cross-entropy loss)

理解「交叉熵」损失函数(包含自信息信息熵KL散度交叉熵概念整理)

机器学习基础熵KL散度交叉熵

二次代价函数交叉熵(cross-entropy)对数似然代价函数(log-likelihood cost)