Sum - 计蒜客

Posted zgglj-com

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Sum - 计蒜客相关的知识,希望对你有一定的参考价值。

技术分享图片

ps:真的好菜,想到莫比乌斯函数,约数又处理不了。模仿 欧拉筛,莫比乌斯筛的递推,也就是当① i % p[ j ] != 0 ② i % p[ j ] == 0,dp[ tp ] 与 dp[ i ]的关系。

技术分享图片

const int N = 20000005;

int n, tot;
int dp[N], p[N];

LL sum[N];
bool use[N];

void Inite() {
    dp[1] = sum[1] = 1;
    rep(i, 2, N) {
       if (!use[i]) {
            p[tot++] = i;
            dp[i] = 2;
       }
       for (int j = 0; j < tot && i * p[j] < N; ++j) {
            int tp = i * p[j];
            use[tp] = 1;
            if (i % p[j] == 0) {
                if ((i / p[j]) % p[j] == 0) dp[tp] = 0;
                else dp[tp] = dp[i] / 2;
                break;
            }
            dp[tp] = dp[i] * 2;
       }
    }
    rep(i, 2, N) sum[i] = sum[i - 1] + dp[i];
}

int main()
{
    Inite();
    BEGIN() {
        sc(n);
        pr(sum[n]);
    }
    return 0;
}

 

以上是关于Sum - 计蒜客的主要内容,如果未能解决你的问题,请参考以下文章

计蒜客 30999 - Sum - [找规律+线性筛][2018ICPC南京网络预赛J题]

计蒜客 掷骰子 dp

计蒜客练习题:素数距离

计蒜客斑点蛇

计蒜客之判断质数

计蒜客课程竞赛入门--统计三角形 代码流程摘记