hdu 6444 Neko's loop 单调队列优化DP

Posted draymonder

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu 6444 Neko's loop 单调队列优化DP相关的知识,希望对你有一定的参考价值。

Neko‘s loop

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 356    Accepted Submission(s): 56


Problem Description
Neko has a loop of size n.
The loop has a happy value ai on the ith(0in1) grid. 
Neko likes to jump on the loop.She can start at anywhere. If she stands at ith grid, she will get ai happy value, and she can spend one unit energy to go to ((i+k)modn)th grid. If she has already visited this grid, she can get happy value again. Neko can choose jump to next grid if she has energy or end at anywhere. 
Neko has m unit energies and she wants to achieve at least s happy value.
How much happy value does she need at least before she jumps so that she can get at least s happy value? Please note that the happy value which neko has is a non-negative number initially, but it can become negative number when jumping.
 

 

Input
The first line contains only one integer T(T50), which indicates the number of test cases. 
For each test case, the first line contains four integers n,s,m,k(1n104,1s1018,1m109,1kn).
The next line contains n integers, the ith integer is ai1(109ai1109)
 

 

Output
For each test case, output one line "Case #x: y", where x is the case number (starting from 1) and y is the answer.
 

 

Sample Input
2 3 10 5 2 3 2 1 5 20 6 3 2 3 2 1 5
 

 

Sample Output
Case #1: 0 Case #2: 2
 

 

Source
 

 

Recommend
chendu

 

刚开始看 觉得是n^2的暴力 ,然后被实验室的人说 必须O(n)过,最后在WA了四发以后,比赛最后半个小时A了这道题

n个数,最多跳m步,每次跳到(i+k)%n,然后求距 s 的最小差,大于s 计为0

很朴素的想法 枚举每个i从0到n-1 然后暴力跑循环节

假设循环节大小为len,最后 res = max(0, getRes(len)) *m/len + max(0, getRes(m%len)); getRes(x) 就是求一个循环节上 长度最大为x的最长子段和(注意是子段 不是子序列)

可以预处理O(n)求出每个循环节, 然后对每个循环节 求上面的结果 

 

 

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>

typedef long long ll;
using namespace std;

const int N = 1e4+10;

int n,m,k,cnt ;
ll s, MAX, v[N];
bool vis[N]; vector<ll> g[N];
ll que[N<<1],mx[N<<1],sta[N<<1];


ll solve(const vector<ll>&vv, int count) {
    int sz= vv.size();
    for(int i=0;i<sz;i++)
        que[i] = que[i+sz] = vv[i];
    sz = sz<<1;
    int st=0,ed=0; 
    ll res=0;
    for(int i=0;i<sz;i++) {
        if(i==0) 
            mx[i] = que[i];
        else 
            mx[i] = mx[i-1]+que[i];

        if(i < count) 
            res = max(res, mx[i]);
        
        while (st < ed && sta[st]+count < i) 
            st++;
        if(st < ed) 
            res = max(res, mx[i] - mx[sta[st]]);
        while (st < ed && mx[i] <= mx[sta[ed-1]])
            ed--;
        sta[ed++]=i;
    }
    return res;
}

ll getRes(const vector<ll>& vv,int step,ll top) {
    ll mod = step % vv.size(); ll kk = step/ vv.size();
    ll sum = 0;
    for(int i=0; i<vv.size();i++) 
        sum += vv[i];
    ll mx1 = solve(vv, mod);
    ll mx2 = solve(vv, vv.size());
    mx1 += max(0LL, sum)*kk;
    mx2 += max(0LL, sum)*((kk>2)?kk-1:0);
    return max(mx1,mx2);
}

int main ()
{
    //freopen("in.txt","r",stdin);
    int T; scanf("%d",&T);
    for(int cas=1; cas<=T; cas++) {
        memset(vis,0,sizeof(vis));
        scanf("%d %lld %d %d", &n, &s, &m, &k);
        for(int i=0;i<n;i++) 
            scanf("%lld", &v[i]);
        cnt=0; MAX=0;
        for(int i=0; i<n; i++) {
            g[cnt].clear();
            if(!vis[i]) {
                vis[i]=1;
                g[cnt].push_back(v[i]);
                for(int j=(i+k)%n; j!=i && !vis[j]; j=(j+k)%n) {
                    g[cnt].push_back(v[j]);
                    vis[j]=1;
                }
                //for(int j=0;j<g[cnt].size();j++) 
                    //cout << g[cnt][j]<<" ";
                //cout <<endl;
                MAX = max(MAX, getRes(g[cnt], m, s));    
                cnt++;    
            }
        }
        if(MAX >= s) MAX=0;
        else MAX = s-MAX;
        printf("Case #%d: %lld
", cas, MAX);
    }
    return 0;
}

 

以上是关于hdu 6444 Neko's loop 单调队列优化DP的主要内容,如果未能解决你的问题,请参考以下文章

hdu 6444 Neko's loop 线段树区间更新

hdu 6444 网络赛 Neko's loop(单调队列 + 裴蜀定理)题解

hdu 5348 MZL&#39;s endless loop

CF 1912 A NEKO's Maze Game

Codeforces Round #614 (Div. 2) C - NEKO's Maze Game

#614 C. NEKO's Maze Game