P1313 计算系数

Posted tony-double-sky

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P1313 计算系数相关的知识,希望对你有一定的参考价值。

P1313 计算系数

题目描述
给定一个多项式 ((by+ax)^k) ,请求出多项式展开后 (x^n imes y^m) 项的系数。

输入输出格式
输入格式:
共一行,包含 5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开。

输出格式:
共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对 10007 取模后的结果。


错误日志: 又双叒叕没开 (long long)


Solution

首先搞(补充)几个知识点:

组合数

首先是 (C(n, 0) = C(n, n) = 1)(C(n, m) = C(n, n - m))

递推:
(C(n, m)) :看做新加入了一个元素, 有两个选择: 选进集合与不选进集合

对于选进集合的 (C(n, m) += C(n - 1, m - 1))
对于没选进集合的 (C(n, m) += C(n - 1, m))

[C_{n}^{m} = C_{n - 1}^{m - 1} + C_{n - 1}^{m}]

LL C[maxn][maxn];
void get_C(LL n){
    for(LL i = 1;i <= n;i++){
        C[i][0] = C[i][i] = 1;
        for(LL j = 1;j < i;j++){
            C[i][j] = C[i - 1][j] + C[i - 1][j - 1];
            C[i][j] %= M;
            }
        }
    }

二项式定理

[(a + b)^x=sum_{k = 0}^{x}C_{x}^{k}a^{k}b^{x - k}]

好了对于这题, 一个裸的二项式定理, 求解的即为 [C_{k}^{n}a^{n}b^{m}]

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
using namespace std;
LL RD(){
    LL out = 0,flag = 1;char c = getchar();
    while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
    while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
    return flag * out;
    }
const LL maxn = 2019, M = 10007;
LL C[maxn][maxn];
void get_C(LL n){
    for(LL i = 1;i <= n;i++){
        C[i][0] = C[i][i] = 1;
        for(LL j = 1;j < i;j++){
            C[i][j] = C[i - 1][j] + C[i - 1][j - 1];
            C[i][j] %= M;
            }
        }
    }
LL Q_pow(LL a, LL p){
    LL base = a, ans = 1;
    while(p){
        if(p & 1)ans *= base, ans %= M;
        base *= base, base %= M;
        p >>= 1;
        }
    return ans % M;
    }
LL a, b, k, n, m, ans;
int main(){
    a = RD(), b = RD(), k = RD(), n = RD(), m = RD();
    get_C(k);
    ans = (Q_pow(a, n) * Q_pow(b, m)) % M;
    ans = (ans * C[k][n]) % M;
    printf("%lld
", ans);
    return 0;
    }

以上是关于P1313 计算系数的主要内容,如果未能解决你的问题,请参考以下文章

P1313 计算系数

洛谷P1313 计算系数

P1313 计算系数

洛谷P1313 计算系数快速幂+dp

洛谷P1313 计算系数 数学 数论

P1313 计算系数