关联分析中寻找频繁项集的FP-growth方法

Posted learninglife

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了关联分析中寻找频繁项集的FP-growth方法相关的知识,希望对你有一定的参考价值。

关联分析是数据挖掘中常用的分析方法。一个常见的需求比如说寻找出经常一起出现的项目集合。

引入一个定义,项集的支持度(support),是指所有包含这个项集的集合在所有数据集中出现的比例。

规定一个最小支持度,那么不小于这个最小支持度的项集称为频繁项集(frequent item set)。

 

如何找到数据集中所有的频繁项集呢?

最简单的方法是对所有项集进行统计,可以通过逐渐增大项集大小的方式来遍历所有项集。比如说下面的数据集,先统计所有单个元素集合的支持度,{z} 的支持度为5 (这里把项目出现次数作为支持度,方便描述),然后逐渐增大项集大小,比如{z,r} 的支持度为1

数据集ID 数据
001 r, z, h, j, p
002 z, y, x, w, v, u, t, s
003 z
004 r, x, n, o, s
005 y, r, x, z, q, t, p
006 y, z, x, e, q, s, t, m

 显然这样的方式,计算量很大,当项目增多,项集的数目是指数增长的。当然我们也可以应用一些规律

1)如果一个项集是频繁项集,那么它的子集都是频繁项集

2)如果一个项集不是频繁项集,那么它的超集也不是频繁项集

Apriori算法就是应用了这些方法可以减少寻找频繁项集的计算。而FP-Growth算法则另辟蹊径,它在遍历数据的时候构造一个树结构,当树构造完成,每个节点记录的值就是这个节点到根节点路径上的项集的支持度。

首先对数据集中的数据按单个元素的支持度进行重排

数据集ID 数据 按单元数支持度重排后的数据
001 r, z, h, j, p z, r
002 z, y, x, w, v, u, t, s z, x, y, s, t
003 z z
004 r, x, n, o, s x, s, r
005 y, r, x, z, q, t, p z, x, y, r, t
006 y, z, x, e, q, s, t, m z, x, y, s, t

然后把每一行数依次拿来构建FP树。把重排后每一行数据从左到右入树。从空集开始,如果树中已存在现有元素,则增加现有元素的值;如果现有元素不存在,则向树添加一个分支。

树构造完成后,以{x:3}这个节点为例,它表示了从这个节点到根节点路径上集合{x,z}的支持度为3。

技术分享图片

那么问题来了,我们如何保证我们能获得所有的频繁项集,即支持度大于最小支持度的项集。是找出节点值大于最小支持度就够了吗?比如设最小支持度为3,从树上可以看出{z,x,y}的支持度为3,但是仔细观察{z,x,y,t}这个项集的支持度也是为3,如何做呢?

首先为每个元素的找到所有前缀路径,一条前缀路径,是指元素父节点到根节点的路径

单元素 前缀路径
z {}: 5
r {x, s}: 1, {z, x, y}: 1, {z}: 1
x {z}: 3, {}: 1
y {z, x}: 3
s {z, x, y}: 2, {x}: 1
t {z, x, y, s}: 2, {z, x, y, r}: 1

 然后对每个元素的所有前缀路径再执行一次FP树的构造过程,这样看到去除这个元素后能得到什么样的频繁项集。如下可以顺利得出{z,x,y} + {t}是一个支持度为3的频繁项集。

技术分享图片

据此,FP-Growth方法就可以算出数据集中最小支持度为3的频繁项集:{z},{z,x},{z,x,y},{z,x,y,t}

 

参考:

1. https://www.cnblogs.com/qwertWZ/p/4510857.html

 

以上是关于关联分析中寻找频繁项集的FP-growth方法的主要内容,如果未能解决你的问题,请参考以下文章

机器学习实战精读--------FP-growth算法

机器学习之FP-growth频繁项集算法

Apriori算法与FP-growth算法

关联规则挖掘算法FP-Growth算法

FP-growth算法发现频繁项集——发现频繁项集

数据挖掘算法:关联分析二(Apriori)