poj3420 Quad Tiling

Posted yzxverygood

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj3420 Quad Tiling相关的知识,希望对你有一定的参考价值。

传送门

题目大意

问讲一个大小为4*n的棋盘用无数1*2的骨牌不重叠覆盖有多少种方案。

分析

我们考虑可以将长为n的棋盘分为两块,一个大小为n-i,另一个大小为i,而为了避免对于不同的i构造出相同的情况,我们必须使长为i的那一半棋盘是一种不可分离的情况,即对于这种情况去掉其中的任意一行均不合法。我们设对于长为n的棋盘方案数为f(n),长为n的棋盘的不可分离棋盘的数量为a[n]。我们自己画一画可以得到a[1]=1,a[2]=4,a[3]=2,a[4]=3,a[5]=2,a[6]=3,不难发现当n>=2是如果n为奇数a[n]=2,否则a[n]=3。

所以我们可以得到

     f(n)=f(n-1)+4f(n-2)+2f(n-3)+3f(n-4)+2f(n-5)+3f(n-6)......

我们发现

     f(n-3)+4f(n-4)+2f(n-5)+3f(n-6)......=f(n-2)

所以我们可以把公式变为

     f(n)=f(n-1)+5f(n-2)+f(n-3)-f(n-4)

然后我们便可以推出矩阵了。详见代码。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
int n,m;
struct mat {
      int g[5][5];
};
inline mat operator * (const mat a,const mat b){
      mat c;
      for(int i=1;i<=4;i++)
        for(int j=1;j<=4;j++){
          int x=0;
          for(int k=1;k<=4;k++)
            x=(x+a.g[i][k]*b.g[k][j]%m)%m;
          c.g[i][j]=x;
        }
      return c;
}
inline int pw(int p){
      mat a,res;
      for(int i=1;i<=4;i++)
        for(int j=1;j<=4;j++)
          a.g[i][j]=0;
      a.g[1][1]=a.g[1][2]=a.g[2][3]=a.g[3][1]=a.g[3][4]=1;
      a.g[2][1]=5;a.g[4][1]=-1;
      res=a;
      while(p){
          if(p&1)res=res*a;
          a=a*a;
          p>>=1;
      }
      int ans=((res.g[1][1]*36%m+m)%m+(res.g[2][1]*11%m+m)%m+
              (res.g[3][1]*5%m+m)%m+(res.g[4][1]%m+m)%m)%m;
      return ans;
}
int main(){
      scanf("%d%d",&n,&m);
      while(n&&m){
          if(n<=4){
            if(n==1)cout<<1%m<<endl;
              else if(n==2)cout<<5%m<<endl;
              else if(n==3)cout<<11%m<<endl;
              else cout<<36%m<<endl;
          }else printf("%d
",pw(n-5));
          scanf("%d%d",&n,&m);
      }
      return 0;
}

以上是关于poj3420 Quad Tiling的主要内容,如果未能解决你的问题,请参考以下文章

poj3420 Quad Tiling

poj 2506 Tiling(大数+规律)

poj2663 Tri Tiling

POJ3420 递推+矩阵快速幂

POJ 2506 Tiling

[2016-03-11][POJ][1609][Tiling Up Blocks]