小智的糖果(Candy) 51nod 提高组试题

Posted wondering-world

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了小智的糖果(Candy) 51nod 提高组试题相关的知识,希望对你有一定的参考价值。

luogu AC通道! (官方数据)

 

题目描述

小智家里来了很多的朋友,总共有N个人,站成一排,分别编号为0到N-1,小智要给他们分糖果。但 是有的朋友有一些特殊的要求,有的人要求他左右的两个人(左边一个、右边一个,一共2个人)的 糖果数都比他的多,有的人要求他左右的两个人的糖果数都比他的少。同时小智希望给不同的人分到 的糖果数不相同,并且每个人至少有一个糖果,同时小智希望分出的糖果个数尽可能的少,现在小智 想知道有多少种分糖果的方法。数据保证不会出现两个人的要求产生冲突的情况。

 

输入格式

第一行三个数N,M,K,分别表示人数,第一种要求的人的个数,K表示第二种要求的人的个数。 接下来M行,每行一个数x,表示位置x的人要求他左右两个人的糖果数都比他的多 接下来K行,每行一个数y,表示位置y的人要求他左右两个人的糖果数都比他的少

输出格式

输出一个数表示方法数对 1000000007取模的结果。

 

这道题考虑Dp解法。

如何想到用DP解法?  因为题目中要求我们最多有多少种方法,如果一个个枚举或者求出的话,就会让我们的时间复杂度分分钟上去。因此这类题都是套路一般的DP。

 

首先,看到题目中有两种要求。一种是让两边的小,一种是让两边的大。

这种要求有一点不好处理的就是,我们总是喜欢直接查看每一个点的情况,而不是查看其旁边的点情况,这样很不方便。于是我们转换一下。

设flagi = 1时,表示第 i 个点小于前一个点。同样的,当 flagi = 2时,表示第i个点大于前一个点。当然,falg = 0时,表示无特殊关系。

 

然后,设置一个dp[i][j] 表示由前 i 个数组成的序列且第 i 位为 j 的合法情况数。在规划的过程中,针对不同的 flag[i],对应不同的状态转移,这里涉及到一个最后一位数 j 插入序列的思维,可以看做把前边的每一种排列中大于等于 j 的数 ++,也就可以达到空出 j 这个数将其插入的效果。

 

在这里引入一个 sum[j],表示为前一轮状态下,最后一位小于等于 j 的情况的和。也就是说,当规划到第 i 位时,sum[j] 表示前 i - 1 位数组成的序列的合法情况的 dp[i - 1][j] 的前缀和。

 

到这里,这道题也就可以被我们AC了。我们要求的和就是 sum[n].

 

AC代码:

 

#include <bits/stdc++.h>
using namespace std;
#define N 100100
#define isdigit(c) ((c)>=‘0‘&&(c)<=‘9‘)
const int mod = (int)1e9 + 7;

inline int read(){
    int x = 0, s = 1;
    char c = getchar();
    while(!isdigit(c)){
        if(c == -)s = -1;
        c = getchar();
    }
    while(isdigit(c)){
        x = (x << 1) + (x << 3) + (c ^ 0);
        c = getchar();
    }
    return x * s;
}

int flag[N], sum[N], dp[N];
int main(){
//    freopen("candy.in","r",stdin);
//    freopen("candy.out","w",stdout);
    int n = read(), K = read(), M = read();
    for(int i = 1;i <= K; i++){
        int a = read();
        flag[++a] = 1;
        flag[a + 1] = 2;
    }
    for(int i = 1;i <= M; i++){
        int a = read();
        flag[++a] = 2;
        flag[a + 1] = 1;
    }
    dp[1] = sum[1] = 1;
    for(int i = 2;i <= n; i++){
        for(int j = 1;j <= i; j++){
            if(flag[i] == 0){
                dp[j] = sum[i - 1] % mod;
            }
            else if(flag[i] == 1){
                dp[j] = (sum[i - 1] - sum[j - 1] + mod) % mod;
            }
            else{
                dp[j] = sum[j - 1];
            }
        }
        for(int j = 1;j <= i; j++){
            sum[j] = (sum[j - 1] + dp[j]) % mod;
        }
    }
    cout << sum[n] << endl;
    return 0;
}

 

以上是关于小智的糖果(Candy) 51nod 提高组试题的主要内容,如果未能解决你的问题,请参考以下文章

小智的旅行(Bridge)51nod 提高组试题

赛艇表演 51nod提高组模拟试题

51nod 1548 欧姆诺姆和糖果 (制约关系优化枚举)

最短路/线性差分约束Candies POJ - 3159

51nod——1548 欧姆诺姆和糖果

年终糖果计划跟风领一波糖果 candy.one 领取教程