HashMap系列之重要方法源码详解
Posted leiger
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HashMap系列之重要方法源码详解相关的知识,希望对你有一定的参考价值。
HashMap 中重要的构造方法:
1、构造一个空的 HashMap,默认初始容量(16)和默认负载因子(0.75)。
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // 将默认的加载因子0.75赋值给loadFactor,并没有创建数组
}
2、 构造一个具有指定的初始容量和默认负载因子(0.75)HashMap。
// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
3、 构造一个具有指定的初始容量和负载因子的HashMap。我们来分析一下。
/*
指定“容量大小”和“加载因子”的构造函数
initialCapacity: 指定的容量
loadFactor:指定的加载因子
*/
public HashMap(int initialCapacity, float loadFactor) {
//判断初始化容量initialCapacity是否小于0
if (initialCapacity < 0)
//如果小于0,则抛出非法的参数异常IllegalArgumentException
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
//判断初始化容量initialCapacity是否大于集合的最大容量MAXIMUM_CAPACITY-》2的30次幂
if (initialCapacity > MAXIMUM_CAPACITY)
//如果超过MAXIMUM_CAPACITY,会将MAXIMUM_CAPACITY赋值给initialCapacity
initialCapacity = MAXIMUM_CAPACITY;
//判断负载因子loadFactor是否小于等于0或者是否是一个非数值
if (loadFactor <= 0 || Float.isNaN(loadFactor))
//如果满足上述其中之一,则抛出非法的参数异常IllegalArgumentException
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
//将指定的加载因子赋值给HashMap成员变量的负载因子loadFactor
this.loadFactor = loadFactor;
/*
tableSizeFor(initialCapacity) 判断指定的初始化容量是否是2的n次幂,如果不是那么会变为比指定初始化容量大的最小的2的n次幂。
这点上述已经讲解过。但是注意,在tableSizeFor方法体内部将计算后的数据返回给调用这里了,并且直接赋值给threshold边界值了。
有些人会觉得这里是一个bug,应该这样书写:this.threshold = tableSizeFor(initialCapacity) * this.loadFactor;
这样才符合threshold的意思(当HashMap的size到达threshold这个阈值时会扩容)。但是,请注意,在jdk8以后的构造方法中,
并没有对table这个成员变量进行初始化,table的初始化被推迟到了put方法中,在put方法中会对threshold重新计算,put方法
的具体实现我们下面会进行讲解
*/
this.threshold = tableSizeFor(initialCapacity);
}
//最后调用了tableSizeFor,来看一下方法实现:
/**
* Returns a power of two size for the given target capacity.
返回比指定初始化容量大的最小的2的n次幂
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
增加方法
put方法是比较复杂的,实现步骤大致如下:
-
先通过hash值计算出key映射到哪个桶;
-
如果桶上没有碰撞冲突,则直接插入;
-
如果出现碰撞冲突了,则需要处理冲突;
-
如果该桶使用红黑树处理冲突,则调用红黑树的方法插入数据;
-
采用传统的链式方法插入,如果链的长度达到临界值,则把链转变为红黑树;
-
-
如果桶中存在重复的键,则为该键替换新值value;
-
如果size大于阈值threshold,则进行扩容。
-
具体的方法如下:
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); }
说明:
-
HashMap只提供了put用于添加元素,putVal方法只是给put方法调用的一个方法,并没有提供给用户使用。 重点看putVal方法。
-
可以看到在putVal()方法中key在这里执行了一下hash()方法,来看一下Hash方法是如何实现的。
static final int hash(Object key) { int h; /* 1)如果key等于null:可以看到当key等于null的时候也是有哈希值的,返回的是0. 2)如果key不等于null:首先计算出key的hashCode赋值给h,然后与h无符号右移16位后的二进制进行按位异或得到最后的hash值 */ return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
从上面代码可以看到HashMap是支持Key为空的,而HashTable是直接用Key来获取HashCode所以key为空会抛异常。
putVal()方法源代码详解
public V put(K key, V value)
{
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
/*
1)transient Node<K,V>[] table; 表示存储Map集合中元素的数组。
2)(tab = table) == null 表示将空的table赋值给tab,然后判断tab是否等于null,第一次肯定是null
3)(n = tab.length) == 0 表示将数组的长度0赋值给n,然后判断n是否等于0,n等于0
由于if判断使用双或,满足一个即可,则执行代码 n = (tab = resize()).length; 进行数组初始化。
并将初始化好的数组长度赋值给n.
4)执行完n = (tab = resize()).length,数组tab每个空间都是null
*/
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
/*
1)i = (n - 1) & hash 表示计算数组的索引赋值给i,即确定元素存放在哪个桶中
2)p = tab[i = (n - 1) & hash]表示获取计算出的位置的数据赋值给节点p
3) (p = tab[i = (n - 1) & hash]) == null 判断节点位置是否等于null,如果为null,则执行代码:
tab[i] = newNode(hash, key, value, null);根据键值对创建新的节点放入该位置的桶中
小结:如果当前桶没有哈希碰撞冲突,则直接把键值对插入空间位置
*/
if ((p = tab[i = (n - 1) & hash]) == null)
//创建一个新的节点存入到桶中
tab[i] = newNode(hash, key, value, null);
else {
// 执行else说明tab[i]不等于null,表示这个位置已经有值了。
Node<K,V> e; K k;
/*
比较桶中第一个元素(数组中的结点)的hash值和key是否相等
1)p.hash == hash :p.hash表示原来存在数据的hash值 hash表示后添加数据的hash值 比较两个hash值是否相等
说明:p表示tab[i],即 newNode(hash, key, value, null)方法返回的Node对象。
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next)
{
return new Node<>(hash, key, value, next);
}
而在Node类中具有成员变量hash用来记录着之前数据的hash值的
2)(k = p.key) == key :p.key获取原来数据的key赋值给k key 表示后添加数据的key 比较两个key的地址值是否相等
3)key != null && key.equals(k):能够执行到这里说明两个key的地址值不相等,那么先判断后添加的key是否等于null,
如果不等于null再调用equals方法判断两个key的内容是否相等
*/
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
/*
说明:两个元素哈希值相等,并且key的值也相等
将旧的元素整体对象赋值给e,用e来记录
*/
e = p;
// hash值不相等或者key不相等;判断p是否为红黑树结点
else if (p instanceof TreeNode)
// 放入树中
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 说明是链表节点
else {
/*
1)如果是链表的话需要遍历到最后节点然后插入
2)采用循环遍历的方式,判断链表中是否有重复的key
*/
for (int binCount = 0; ; ++binCount) {
/*
1)e = p.next 获取p的下一个元素赋值给e
2)(e = p.next) == null 判断p.next是否等于null,等于null,说明p没有下一个元素,
那么此时到达了链表的尾部,还没有找到重复的key,则说明HashMap没有包含该键将该键值对插入链表中
*/
if ((e = p.next) == null) {
/*
1)创建一个新的节点插入到尾部
p.next = newNode(hash, key, value, null);
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next)
{
return new Node<>(hash, key, value, next);
}
注意第四个参数next是null,因为当前元素插入到链表末尾了,那么下一个节点肯定是 null
2)这种添加方式也满足链表数据结构的特点,每次向后添加新的元素
*/
p.next = newNode(hash, key, value, null);
/*
1)节点添加完成之后判断此时节点个数是否大于TREEIFY_THRESHOLD临界值8,如果大于则将链表转换为红黑树
2)int binCount = 0 :表示for循环的初始化值。从0开始计数。记录着遍历节点的个数。值是0表示第一个节点,
1表示第二个节点。。。。7表示第八个节点,加上数组中的的一个元素,元素个数是9
TREEIFY_THRESHOLD - 1 --》8 - 1 ---》7,如果binCount的值是7(加上数组中的的一个元素,元素个数是9)
TREEIFY_THRESHOLD - 1也是7,此时转换红黑树
*/
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
//转换为红黑树
treeifyBin(tab, hash);
// 跳出循环
break;
}
/*
执行到这里说明e = p.next 不是null,不是最后一个元素。继续判断链表中结点的key值与插入的元素的key值是否相等
*/
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
// 相等,跳出循环
/*
要添加的元素和链表中的存在的元素的key相等了,则跳出for循环。不用再继续比较了
直接执行下面的if语句去替换去 if (e != null)
*/
break;
/*
说明新添加的元素和当前节点不相等,继续查找下一个节点。
用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
*/
p = e;
}
}
/*
表示在桶中找到key值、hash值与插入元素相等的结点
也就是说通过上面的操作找到了重复的键,所以这里就是把该键的值变为新的值,并返回旧值
这里完成了put方法的修改功能
*/
if (e != null) {
// 记录e的value
V oldValue = e.value;
// onlyIfAbsent为false或者旧值为null
if (!onlyIfAbsent || oldValue == null)
//用新值替换旧值
//e.value 表示旧值 value表示新值
e.value = value;
// 访问后回调
afterNodeAccess(e);
// 返回旧值
return oldValue;
}
}
//修改记录次数
++modCount;
// 判断实际大小是否大于threshold阈值,如果超过则扩容
if (++size > threshold)
resize();
// 插入后回调
afterNodeInsertion(evict);
return null;
}
链表转换为红黑树的treeifyBin方法
/**
* Replaces all linked nodes in bin at index for given hash unless
* table is too small, in which case resizes instead.
替换指定哈希表的索引处桶中的所有链接节点,除非表太小,否则将修改大小。
Node<K,V>[] tab = tab 数组名
int hash = hash表示哈希值
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
/*
如果当前数组为空或者数组的长度小于进行树形化的阈值(MIN_TREEIFY_CAPACITY = 64),
就去扩容。而不是将节点变为红黑树。
目的:如果数组很小,那么转换红黑树,然后遍历效率要低一些。这时进行扩容,那么重新计算哈希值
,链表长度有可能就变短了,数据会放到数组中,这样相对来说效率高一些。
*/
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
//扩容方法
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
/*
1)执行到这里说明哈希表中的数组长度大于阈值64,开始进行树形化
2)e = tab[index = (n - 1) & hash]表示将数组中的元素取出赋值给e,e是哈希表中指定位置桶里的链表节点,从第一个开始
*/
//hd:红黑树的头结点 tl :红黑树的尾结点
TreeNode<K,V> hd = null, tl = null;
do {
//新创建一个树的节点,内容和当前链表节点e一致
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
//将新创键的p节点赋值给红黑树的头结点
hd = p;
else {
/*
p.prev = tl:将上一个节点p赋值给现在的p的前一个节点
tl.next = p;将现在节点p作为树的尾结点的下一个节点
*/
p.prev = tl;
tl.next = p;
}
tl = p;
/*
e = e.next 将当前节点的下一个节点赋值给e,如果下一个节点不等于null
则回到上面继续取出链表中节点转换为红黑树
*/
} while ((e = e.next) != null);
/*
让桶中的第一个元素即数组中的元素指向新建的红黑树的节点,以后这个桶里的元素就是红黑树
而不是链表数据结构了
*/
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
小结:上述操作一共做了如下几件事:
- 根据哈希表中元素个数确定是扩容还是树形化;
- 如果是树形化遍历桶中的元素,创建相同个数的树形节点,复制内容,建立起联系;
- 最后让桶中的第一个元素指向新创建的树根节点,替换桶的链表内容为树形化内容。
扩容机制
- 什么时候才需要扩容
当HashMap中的元素个数超过数组大小(数组长度)*loadFactor(负载因子)时,就会进行数组扩容,loadFactor的默认值(DEFAULT_LOAD_FACTOR)是0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中的元素个数超过16×0.75=12(这个值就是阈值或者边界值threshold值)的时候,就把数组的大小扩展为2×16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预知元素的个数能够有效的提高HashMap的性能。
注意:
当HashMap中的其中一个链表的对象个数如果达到了8个,此时如果数组长度没有达到64,那么HashMap会先扩容解决,如果已经达到了64,
那么这个链表会变成红黑树,节点类型由Node变成TreeNode类型。当然,如果映射关系被移除后,下次执行resize方法时判断树的节点
个数低于6,也会再把树转换为链表。
- HashMap的扩容是什么
进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。 HashMap在进行扩容时,使用的rehash方式非常巧妙,因为每次扩容都是翻倍,与原来计算的 (n-1)&hash的结果相比,只是多了一个bit位,所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。
怎么理解呢?例如我们从16扩展为32时,具体的变化如下所示:
&(按位与运算):运算规则:相同的二进制数位上,都是1的时候,结果为1,否则为零。
hash1:1111 1111 1111 1111 0000 1111 0000 0101
hash2:1111 1111 1111 1111 0000 1111 0001 0101
? 因此元素在重新计算hash之后,因为n变为2倍,那么n-1的标记范围在高位多1bit(红色),因此新的index就会发生这样的变化:
说明:5是假设计算出来的原来的索引。这样就验证了上述所描述的:扩容之后所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。
? 因此,我们在扩充HashMap的时候,不需要重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就可以了,是0的话索引没变,
是1的话索引变成“原索引+oldCap(原位置+旧容量)”。可以看看下图为16扩充为32的resize示意图:
正是因为这样巧妙的rehash方式,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,
在resize的过程中保证了rehash之后每个桶上的节点数一定小于等于原来桶上的节点数,保证了rehash之后不会出现更严重
的hash冲突,均匀的把之前的冲突的节点分散到新的桶中了。
源码resize方法详解
final Node<K,V>[] resize() {
//得到当前数组
Node<K,V>[] oldTab = table;
//如果当前数组等于null长度返回0,否则返回当前数组的长度
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//当前阈值点 默认是12(16*0.75)
int oldThr = threshold;
int newCap, newThr = 0;
//如果老的数组长度大于0
//开始计算扩容后的大小
if (oldCap > 0) {
// 超过最大值就不再扩充了,就只好随你碰撞去吧
if (oldCap >= MAXIMUM_CAPACITY) {
//修改阈值为int的最大值
threshold = Integer.MAX_VALUE;
return oldTab;
}
/*
没超过最大值,就扩充为原来的2倍
1)(newCap = oldCap << 1) < MAXIMUM_CAPACITY 扩大到2倍之后容量要小于最大容量
2)oldCap >= DEFAULT_INITIAL_CAPACITY 原数组长度大于等于数组初始化长度16
*/
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
//阈值扩大一倍
newThr = oldThr << 1; // double threshold
}
//老阈值点大于0 直接赋值
else if (oldThr > 0) // 老阈值赋值给新的数组长度
newCap = oldThr;
else {// 直接使用默认值
newCap = DEFAULT_INITIAL_CAPACITY;//16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的resize最大上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//新的阈值 默认原来是12 乘以2之后变为24
threshold = newThr;
//创建新的哈希表
@SuppressWarnings({"rawtypes","unchecked"})
//newCap是新的数组长度--》32
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//判断旧数组是否等于空
if (oldTab != null) {
// 把每个bucket都移动到新的buckets中
//遍历旧的哈希表的每个桶,重新计算桶里元素的新位置
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
//原来的数据赋值为null 便于GC回收
oldTab[j] = null;
//判断数组是否有下一个引用
if (e.next == null)
//没有下一个引用,说明不是链表,当前桶上只有一个键值对,直接插入
newTab[e.hash & (newCap - 1)] = e;
//判断是否是红黑树
else if (e instanceof TreeNode)
//说明是红黑树来处理冲突的,则调用相关方法把树分开
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // 采用链表处理冲突
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
//通过上述讲解的原理来计算节点的新位置
do {
// 原索引
next = e.next;
//这里来判断如果等于true e这个节点在resize之后不需要移动位置
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 原索引+oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 原索引+oldCap放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
以上是关于HashMap系列之重要方法源码详解的主要内容,如果未能解决你的问题,请参考以下文章