R语言广义线性模型索赔频率预测:过度分散风险暴露数和树状图可视化

Posted tecdat

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言广义线性模型索赔频率预测:过度分散风险暴露数和树状图可视化相关的知识,希望对你有一定的参考价值。

 

技术图片?

技术图片

原文链接:http://tecdat.cn/?p=13963

在精算科学和保险费率制定中,考虑到风险敞口可能是一场噩梦。不知何故,简单的结果是因为计算起来更加复杂,只是因为我们必须考虑到暴露是一个异构变量这一事实。

保险费率制定中的风险敞口可以看作是审查数据的问题(在我的数据集中,风险敞口始终小于1,因为观察结果是合同,而不是保单持有人),利息变量是未观察到的变量,因为我们必须为保险合同定价一年(整年)的保险期。因此,我们必须对保险索赔的年度频率进行建模。

技术图片技术图片?

 

在我们的数据集中,我们考虑索赔总数与总风险承担比率。例如,如果我们考虑泊松过程,可能性是

技术图片技术图片?

技术图片技术图片?

 

 

因此,我们有一个预期值的估算,一个自然估算 。

现在,我们需要估算方差,更准确地说是条件变量。

这可以用来检验泊松假设是否对频率建模有效。考虑以下数据集,

>  nombre=rbind(nombre1,nombre2)
>  baseFREQ = merge(contrat,nombre)
技术图片

在这里,我们确实有两个感兴趣的变量,即每张合约的敞口,

>  E <- baseFREQ$exposition
技术图片

和(观察到的)索赔数量(在该时间段内)

>  Y <- baseFREQ$nbre
技术图片

无需协变量,可以计算每个合同的平均(每年)索赔数量以及相关的方差

> (mean=weighted.mean(Y/E,E))
[1] 0.07279295
> (variance=sum((Y-mean*E)^2)/sum(E)) 
[1] 0.08778567
技术图片

看起来方差(略)大于平均值(我们将在几周后看到如何更正式地对其进行测试)。可以在保单持有人居住的地区添加协变量,例如人口密度,


Density, zone 11 average = 0.07962411  variance = 0.08711477 
Density, zone 21 average = 0.05294927  variance = 0.07378567 
Density, zone 22 average = 0.09330982  variance = 0.09582698 
Density, zone 23 average = 0.06918033  variance = 0.07641805 
Density, zone 24 average = 0.06004009  variance = 0.06293811 
Density, zone 25 average = 0.06577788  variance = 0.06726093 
Density, zone 26 average = 0.0688496   variance = 0.07126078 
Density, zone 31 average = 0.07725273  variance = 0.09067 
Density, zone 41 average = 0.03649222  variance = 0.03914317 
Density, zone 42 average = 0.08333333  variance = 0.1004027 
Density, zone 43 average = 0.07304602  variance = 0.07209618 
Density, zone 52 average = 0.06893741  variance = 0.07178091 
Density, zone 53 average = 0.07725661  variance = 0.07811935 
Density, zone 54 average = 0.07816105  variance = 0.08947993 
Density, zone 72 average = 0.08579731  variance = 0.09693305 
Density, zone 73 average = 0.04943033  variance = 0.04835521 
Density, zone 74 average = 0.1188611   variance = 0.1221675 
Density, zone 82 average = 0.09345635  variance = 0.09917425 
Density, zone 83 average = 0.04299708  variance = 0.05259835 
Density, zone 91 average = 0.07468126  variance = 0.3045718 
Density, zone 93 average = 0.08197912  variance = 0.09350102 
Density, zone 94 average = 0.03140971  variance = 0.04672329
技术图片

可以可视化该信息

> plot(meani,variancei,cex=sqrt(Ei),col="grey",pch=19,
+ xlab="Empirical average",ylab="Empirical variance")
> points(meani,variancei,cex=sqrt(Ei))
技术图片

 

技术图片技术图片?

圆圈的大小与组的大小有关(面积与组内的总暴露量成正比)。第一个对角线对应于泊松模型,即方差应等于均值。也可以考虑其他协变量

技术图片技术图片?

 

或汽车品牌,

技术图片技术图片?

 

也可以将驾驶员的年龄视为分类变量

技术图片技术图片?

让我们更仔细地看一下不同年龄段的人,

 

技术图片技术图片?

在右边,我们可以观察到年轻的(没有经验的)驾驶员。那是预料之中的。但是有些类别  低于  第一个对角线:期望的频率很大,但方差不大。也就是说,我们  可以肯定的  是,年轻的驾驶员会发生更多的车祸。相反,它不是一个异类:年轻的驾驶员可以看作是一个相对同质的类,发生车祸的频率很高。

使用原始数据集(在这里,我仅使用具有50,000个客户的子集),我们确实获得了以下图形:

技术图片技术图片?

 

由于圈正在从18岁下降到25岁,因此具有明显的经验影响。

同时我们可以发现有可能将曝光量视为标准变量,并查看系数实际上是否等于1。如果没有任何协变量,



Call:
glm(formula = Y ~ log(E), family = poisson("log"))

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.3988  -0.3388  -0.2786  -0.1981  12.9036  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -2.83045    0.02822 -100.31   <2e-16 ***
log(E)       0.53950    0.02905   18.57   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 12931  on 49999  degrees of freedom
Residual deviance: 12475  on 49998  degrees of freedom
AIC: 16150

Number of Fisher Scoring iterations: 6
技术图片

也就是说,该参数显然严格小于1。它与重要性均不相关,

Linear hypothesis test

Hypothesis:
log(E) = 1

Model 1: restricted model
Model 2: Y ~ log(E)

  Res.Df Df  Chisq Pr(>Chisq)    
1  49999                         
2  49998  1 251.19  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
技术图片

我也没有考虑协变量,



Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.7114  -0.3200  -0.2637  -0.1896  12.7104  

Coefficients:
                              Estimate Std. Error z value Pr(>|z|)    
(Intercept)                  -14.07321  181.04892  -0.078 0.938042    
log(exposition)                0.56781    0.03029  18.744  < 2e-16 ***
carburantE                    -0.17979    0.04630  -3.883 0.000103 ***
as.factor(ageconducteur)19    12.18354  181.04915   0.067 0.946348    
as.factor(ageconducteur)20    12.48752  181.04902   0.069 0.945011
技术图片

因此,假设暴露是此处的外生变量可能是一个过强的假设。

接下来我们开始讨论建模索赔频率时的过度分散。在前面,我讨论了具有不同暴露程度的经验方差的计算。但是我只使用一个因素来计算类。当然,可以使用更多的因素。例如,使用因子的笛卡尔积


Class D A (17,24]  average = 0.06274415  variance = 0.06174966 
Class D A (24,40]  average = 0.07271905  variance = 0.07675049 
Class D A (40,65]  average = 0.05432262  variance = 0.06556844 
Class D A (65,101] average = 0.03026999  variance = 0.02960885 
Class D B (17,24]  average = 0.2383109   variance = 0.2442396 
Class D B (24,40]  average = 0.06662015  variance = 0.07121064 
Class D B (40,65]  average = 0.05551854  variance = 0.05543831 
Class D B (65,101] average = 0.0556386   variance = 0.0540786 
Class D C (17,24]  average = 0.1524552   variance = 0.1592623 
Class D C (24,40]  average = 0.0795852   variance = 0.09091435 
Class D C (40,65]  average = 0.07554481  variance = 0.08263404 
Class D C (65,101] average = 0.06936605  variance = 0.06684982 
Class D D (17,24]  average = 0.1584052   variance = 0.1552583 
Class D D (24,40]  average = 0.1079038   variance = 0.121747 
Class D D (40,65]  average = 0.06989518  variance = 0.07780811 
Class D D (65,101] average = 0.0470501   variance = 0.04575461 
Class D E (17,24]  average = 0.2007164   variance = 0.2647663 
Class D E (24,40]  average = 0.1121569   variance = 0.1172205 
Class D E (40,65]  average = 0.106563    variance = 0.1068348 
Class D E (65,101] average = 0.1572701   variance = 0.2126338 
Class D F (17,24]  average = 0.2314815   variance = 0.1616788 
Class D F (24,40]  average = 0.1690485   variance = 0.1443094 
Class D F (40,65]  average = 0.08496827  variance = 0.07914423 
Class D F (65,101] average = 0.1547769   variance = 0.1442915 
Class E A (17,24]  average = 0.1275345   variance = 0.1171678 
Class E A (24,40]  average = 0.04523504  variance = 0.04741449 
Class E A (40,65]  average = 0.05402834  variance = 0.05427582 
Class E A (65,101] average = 0.04176129  variance = 0.04539265 
Class E B (17,24]  average = 0.1114712   variance = 0.1059153 
Class E B (24,40]  average = 0.04211314  variance = 0.04068724 
Class E B (40,65]  average = 0.04987117  variance = 0.05096601 
Class E B (65,101] average = 0.03123003  variance = 0.03041192 
Class E C (17,24]  average = 0.1256302   variance = 0.1310862 
Class E C (24,40]  average = 0.05118006  variance = 0.05122782 
Class E C (40,65]  average = 0.05394576  variance = 0.05594004 
Class E C (65,101] average = 0.04570239  variance = 0.04422991 
Class E D (17,24]  average = 0.1777142   variance = 0.1917696 
Class E D (24,40]  average = 0.06293331  variance = 0.06738658 
Class E D (40,65]  average = 0.08532688  variance = 0.2378571 
Class E D (65,101] average = 0.05442916  variance = 0.05724951 
Class E E (17,24]  average = 0.1826558   variance = 0.2085505 
Class E E (24,40]  average = 0.07804062  variance = 0.09637156 
Class E E (40,65]  average = 0.08191469  variance = 0.08791804 
Class E E (65,101] average = 0.1017367   variance = 0.1141004 
Class E F (17,24]  average = 0           variance = 0 
Class E F (24,40]  average = 0.07731177  variance = 0.07415932 
Class E F (40,65]  average = 0.1081142   variance = 0.1074324 
Class E F (65,101] average = 0.09071118  variance = 0.1170159
技术图片

同样,可以将方差与平均值作图,

> plot(vm,vv,cex=sqrt(ve),col="grey",pch=19,
+ xlab="Empirical average",ylab="Empirical variance")
> points(vm,vv,cex=sqrt(ve))
> abline(a=0,b=1,lty=2)
技术图片

技术图片技术图片?

 

一种替代方法是使用树。树可以从其他变量获得,但它应该是相当接近我们理想的模型。在这里,我确实使用了整个数据库(超过60万行)

树如下

> plot(T)
> text(T)
技术图片

技术图片技术图片?

 

现在,每个分支都定义了一个类,可以使用它来定义一个类。应该被认为是同质的。


Class  6 average =   0.04010406  variance = 0.04424163 
Class  8 average =   0.05191127  variance = 0.05948133 
Class  9 average =   0.07442635  variance = 0.08694552 
Class  10 average =  0.4143646   variance = 0.4494002 
Class  11 average =  0.1917445   variance = 0.1744355 
Class  15 average =  0.04754595  variance = 0.05389675 
Class  20 average =  0.08129577  variance = 0.0906322 
Class  22 average =  0.05813419  variance = 0.07089811 
Class  23 average =  0.06123807  variance = 0.07010473 
Class  24 average =  0.06707301  variance = 0.07270995 
Class  25 average =  0.3164557   variance = 0.2026906 
Class  26 average =  0.08705041  variance = 0.108456 
Class  27 average =  0.06705214  variance = 0.07174673 
Class  30 average =  0.05292652  variance = 0.06127301 
Class  31 average =  0.07195285  variance = 0.08620593 
Class  32 average =  0.08133722  variance = 0.08960552 
Class  34 average =  0.1831559   variance = 0.2010849 
Class  39 average =  0.06173885  variance = 0.06573939 
Class  41 average =  0.07089419  variance = 0.07102932 
Class  44 average =  0.09426152  variance = 0.1032255 
Class  47 average =  0.03641669  variance = 0.03869702 
Class  49 average =  0.0506601   variance = 0.05089276 
Class  50 average =  0.06373107  variance = 0.06536792 
Class  51 average =  0.06762947  variance = 0.06926191 
Class  56 average =  0.06771764  variance = 0.07122379 
Class  57 average =  0.04949142  variance = 0.05086885 
Class  58 average =  0.2459016   variance = 0.2451116 
Class  59 average =  0.05996851  variance = 0.0615773 
Class  61 average =  0.07458053  variance = 0.0818608 
Class  63 average =  0.06203737  variance = 0.06249892 
Class  64 average =  0.07321618  variance = 0.07603106 
Class  66 average =  0.07332127  variance = 0.07262425 
Class  68 average =  0.07478147  variance = 0.07884597 
Class  70 average =  0.06566728  variance = 0.06749411 
Class  71 average =  0.09159605  variance = 0.09434413 
Class  75 average =  0.03228927  variance = 0.03403198 
Class  76 average =  0.04630848  variance = 0.04861813 
Class  78 average =  0.05342351  variance = 0.05626653 
Class  79 average =  0.05778622  variance = 0.05987139 
Class  80 average =  0.0374993   variance = 0.0385351 
Class  83 average =  0.06721729  variance = 0.07295168 
Class  86 average =  0.09888492  variance = 0.1131409 
Class  87 average =  0.1019186   variance = 0.2051122 
Class  88 average =  0.05281703  variance = 0.0635244 
Class  91 average =  0.08332136  variance = 0.09067632 
Class  96 average =  0.07682093  variance = 0.08144446 
Class  97 average =  0.0792268   variance = 0.08092019 
Class  99 average =  0.1019089   variance = 0.1072126 
Class  100 average = 0.1018262   variance = 0.1081117 
Class  101 average = 0.1106647   variance = 0.1151819 
Class  103 average = 0.08147644  variance = 0.08411685 
Class  104 average = 0.06456508  variance = 0.06801061 
Class  107 average = 0.1197225   variance = 0.1250056 
Class  108 average = 0.0924619   variance = 0.09845582 
Class  109 average = 0.1198932   variance = 0.1209162
技术图片

在这里,当根据索赔的经验平均值绘制经验方差时,我们得到

技术图片技术图片?

 

在这里,我们可以识别剩余异质性的类。

 

以上是关于R语言广义线性模型索赔频率预测:过度分散风险暴露数和树状图可视化的主要内容,如果未能解决你的问题,请参考以下文章

R语言广义线性模型Logistic回归模型C Statistics计算

R语言广义线性模型函数GLMglm函数构建逻辑回归模型(Logistic regression)构建仿真数据集控制所有其它预测变量进而评估单个预测因子对结果概率的影响

R语言广义线性模型Logistic回归案例代码

R语言广义线性模型

R语言mgcv包中的gam函数拟合广义加性模型(Generalized Additive Model)GAM(对非线性变量进行样条处理计算RMSER方调整R方可视化模型预测值与真实值的曲线)

基于 R的 广义线性模型分析