决策变元选择_决策分支策略——文献学习A branching heuristic for SAT solvers based on complete implication graphs
Posted yuweng1689
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了决策变元选择_决策分支策略——文献学习A branching heuristic for SAT solvers based on complete implication graphs相关的知识,希望对你有一定的参考价值。
A branching heuristic for SAT solvers based on complete implication graphs
Xiao, F., Li, C., Luo, M. et al. A branching heuristic for SAT solvers based on complete implication graphs. Sci. China Inf. Sci. 62, 72103 (2019). https://doi.org/10.1007/s11432-017-9467-7
除了VSIDS和LRB之外,新的决策变元选择(活跃度)策略——基于activity_distance[v]
Abstract
The performance of modern conflict-driven clause learning (CDCL) SAT solvers strongly depends on branching heuristics. State-of-the-art branching heuristics, such as variable state independent decaying sum (VSIDS) and learning rate branching (LRB), are computed and maintained by aggregating the occurrences of the variables in conflicts. However, these heuristics are not sufficiently accurate at the beginning of the search because they are based on very few conflicts.
We propose the distance branching heuristic, which, given a conflict, constructs a complete implication graph and increments the score of a variable considering the longest distance between the variable and the conflict rather than the simple presence of the variable in the graph. 译文:给定一个冲突,构造一个完整的隐含图,并考虑变量与冲突之间的最长距离,而不是简单地考虑变量在图中的存在,增加变量的得分。
We implemented the proposed distance branching heuristic in Maple_LCM and Glucose-3.0, two of the best CDCL SAT solvers, and used the resulting solvers to solve instances from the application and crafted tracks of the 2014 and 2016 SAT competitions and the main track of the 2017 SAT competition. The empirical results demonstrate that using the proposed distance branching heuristic in the initialization phase of Maple_LCM and Glucose-3.0 solvers improves performance. The Maple_LCM solver with the proposed distance branching heuristic in the initialization phase won the main track of the 2017 SAT competition. |
References
- 1
Audemard G, Simon L. Glucose 2.3 in the SAT 2013 competition. In: Proceedings of SAT Competition, 2013. 42–43
- 2
Biere A. Lingeling, Plingeling, Picosat and Precosat at SAT Race 2010. FMV Report Series, Technical Report 10/1, 2010
- 3
Eén N, Sorensson N. An extensible SAT solver. In: Proceedings of SAT, 2003. 502–518
- 4
Marques-Silva J, Sakallah K A. GRASP — a new search algorithm for satisfiability. In: Proceedings of the International Conference on Computer-Aided Design, 1996. 220–227
- 5
Moskewicz M, Madigan C, Zhao Y, et al. Chaff: engineering an efficient SAT solver. In: Proceedings of the Design Automation Conference, 2001. 530–535
- 6
Soos M. CryptoMiniSat v4. In: Proceedings of SAT Competition, 2014. 23
- 7
Marques-Silva J, Lynce I, Malik S. Conflict-driven clause learning SAT solvers. In: Handbook of Satisfiability. Washington: ios Press, 2009. 131–153
- 8
Liang J H, Ganesh V, Poupart P, et al. Exponential recency weighted average branching heuristic for SAT solvers. In: Proceedings of AAAI, 2016. 3434–3440
- 9
Audemard G, Simon L. Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of IJCAI, 2009. 399–404
- 10
Luo M, Li C M, Xiao F, et al. An effective learnt clause minimization approach for CDCL SAT solvers. In: Proceedings of IJCAI, 2017. 703–711
- 11
Xiao F, Luo M, Li C M, et al. MapleLRB LCM, Maple_LCM, Maple_LCM_Dist, MapleLRB_LCMoccRestart and Glucose-3.0+width in SAT Competition 2017. In: Proceedings of SAT Competition, 2017. 22–23
- 12
Audemard G, Simon L. Refining restarts strategies for SAT and UNSAT. In: Proceedings of International Conference on Principles and Practice of Constraint Programming, 2012. 118–126
- 13
Biere A, Förhlich A. Evaluating CDCL variable scoring schemes. In: Proceedings of SAT, 2015. 405–422
- 14
Goldberg E, Novikov Y. BerkMin: a fast and robust Sat-solver. Discrete Appl Math, 2007, 155: 1549–1561
- 15
Jeroslow R G, Wang J. Solving propositional satisfiability problems. Ann Math Artif Intell, 1990, 1: 167–187
- 16
Marques-Silva J. The impact of branching heuristics in propositional satisfiability algorithms. In: Proceedings of EPIA, 1999. 850
- 17
Audemard G, Simon L. GLUCOSE: a solver that predicts learnt clauses quality. In: Proceedings of SAT Competition, 2009. 7–8
- 18
Audemard G, Simon L. Glucose in the SAT 2014 competition. In: Proceedings of SAT Competition, 2014. 31–32
- 19
Liang J H, Ganesh V, Poupart P, et al. Learning rate based branching heuristic for SAT solvers. In: Proceedings of SAT, 2016. 123–140
- 20
Liang J H, Oh C, Ganesh V, et al. MapleCOMSPS, MapleCOMSPS LRB, MapleCOMSPS CHB. In: Proceedings of SAT Competition, 2016. 52–53
- 21
Li C M, Manyá F, Mohamedou N O, et al. Resolution-based lower bounds in MaxSAT. Constraints, 2010, 15: 456–484
以上是关于决策变元选择_决策分支策略——文献学习A branching heuristic for SAT solvers based on complete implication graphs的主要内容,如果未能解决你的问题,请参考以下文章
决策变元选择_决策分支策略——文献学习Improving SAT Solving Using Monte Carlo Tree Search-Based Clause Learning