684. Redundant Connection
Posted wentiliangkaihua
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了684. Redundant Connection相关的知识,希望对你有一定的参考价值。
In this problem, a tree is an undirected graph that is connected and has no cycles.
The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array of edges
. Each element of edges
is a pair [u, v]
with u < v
, that represents an undirected edge connecting nodes u
and v
.
Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v]
should be in the same format, with u < v
.
Example 1:
Input: [[1,2], [1,3], [2,3]] Output: [2,3] Explanation: The given undirected graph will be like this: 1 / 2 - 3
Example 2:
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]] Output: [1,4] Explanation: The given undirected graph will be like this: 5 - 1 - 2 | | 4 - 3
Note:
- The size of the input 2D-array will be between 3 and 1000.
- Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.
Update (2017-09-26):
We have overhauled the problem description + test cases and specified clearly the graph is an undirected graph. For the directed graph follow up please see Redundant Connection II). We apologize for any inconvenience caused.
分析:
字面意思是给一个图由n条边构成,去掉某条边后成为了树(无向无环连通图)
题意是给一个图,由一条边一条边构成,当加入某条边后形成了环,我们现在要找到这条边。
采用查并集(并查集(union find))来做,本质是一个数据结构(class),里面有int[ ] parent, int[ ] rank, 分别对应的是该数字的parent和rank,rank有点像height(size),所以可以union by rank OR union by size.
查int find(x):找出x的parent并返回,具体实现是直到parent是它自己为止(因为初始化每个数parent都是他自己)
并 boolean union(int x, int y):尝试合并x和y,如果能合并说明这条边的加入没有构成环,如果不能,说明他们拥有相同的parent,那很明显加入这条边会成环。
具体实现是比较两个的parent,接着要compress一下,把rank低的合并到rank高的,记得更新rank
初始化时多一位,因为数字是1-N
class Solution { public int[] findRedundantConnection(int[][] edges) { DS ds = new DS(edges.length+1); for (int[] edge : edges) { if (!ds.union(edge[0], edge[1])) return edge; } return new int[]{}; } static class DS { private int[] parent; private int[] rank; public DS(int n) { parent = new int[n]; rank = new int[n]; for(int i = 0; i < n; i++) parent[i] = i; } public int find(int x) { if(parent[x] != x){ parent[x] = find(parent[x]); } return parent[x]; } // Return false if x, y are connected. public boolean union(int x, int y) { int rootX = find(x); int rootY = find(y); if (rootX == rootY) return false; // Make root of smaller rank point to root of larger rank. if(rank[rootX] > rank[rootY]){ parent[rootY] = rootX; rank[rootX]+=rank[rootY]; } else{ parent[rootX] = rootY; rank[rootY]+=rank[rootX]; } return true; } } }
union find看下https://www.geeksforgeeks.org/union-find-algorithm-set-2-union-by-rank/或者花花酱
以上是关于684. Redundant Connection的主要内容,如果未能解决你的问题,请参考以下文章
Graph-684. Redundant Connection