684. Redundant Connection

Posted wentiliangkaihua

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了684. Redundant Connection相关的知识,希望对你有一定的参考价值。

In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

Example 1:

Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
  1
 / 2 - 3

 

Example 2:

Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
    |   |
    4 - 3

 

Note:

  • The size of the input 2D-array will be between 3 and 1000.
  • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

 

 

Update (2017-09-26):
We have overhauled the problem description + test cases and specified clearly the graph is an undirected graph. For the directed graph follow up please see Redundant Connection II). We apologize for any inconvenience caused.

分析:

字面意思是给一个图由n条边构成,去掉某条边后成为了树(无向无环连通图)

题意是给一个图,由一条边一条边构成,当加入某条边后形成了环,我们现在要找到这条边。

采用查并集(并查集(union find))来做,本质是一个数据结构(class),里面有int[ ] parent, int[ ] rank, 分别对应的是该数字的parent和rank,rank有点像height(size),所以可以union by rank OR union by size.

  查int find(x):找出x的parent并返回,具体实现是直到parent是它自己为止(因为初始化每个数parent都是他自己)

  并 boolean union(int x, int y):尝试合并x和y,如果能合并说明这条边的加入没有构成环,如果不能,说明他们拥有相同的parent,那很明显加入这条边会成环。

具体实现是比较两个的parent,接着要compress一下,把rank低的合并到rank高的,记得更新rank

初始化时多一位,因为数字是1-N

class Solution {
    public int[] findRedundantConnection(int[][] edges) {
            DS ds = new DS(edges.length+1);

            for (int[] edge : edges) {
                if (!ds.union(edge[0], edge[1])) return edge;
            }
            return new int[]{};
        }

        static class DS {

            private int[] parent;
            private int[] rank;

            public DS(int n) {
                parent = new int[n];
                rank = new int[n];
                
                for(int i = 0; i < n; i++) parent[i] = i;
            }

            public int find(int x) {
                if(parent[x] != x){
                    parent[x] = find(parent[x]);
                }
                return parent[x];
            }

            // Return false if x, y are connected.
            public boolean union(int x, int y) {
                int rootX = find(x);
                int rootY = find(y);
                if (rootX == rootY) return false;

                // Make root of smaller rank point to root of larger rank.
  
                if(rank[rootX] > rank[rootY]){
                    parent[rootY] = rootX;
                    rank[rootX]+=rank[rootY];
                }
                else{
                    parent[rootX] = rootY;
                    rank[rootY]+=rank[rootX];
                }
                return true;
            }
        }
}

https://leetcode.com/problems/redundant-connection/discuss/123819/Union-Find-with-Explanations-(Java-Python)

union find看下https://www.geeksforgeeks.org/union-find-algorithm-set-2-union-by-rank/或者花花酱

 

以上是关于684. Redundant Connection的主要内容,如果未能解决你的问题,请参考以下文章

684. Redundant Connection

684. Redundant Connection

684. Redundant Connection

Graph-684. Redundant Connection

[LeetCode] 684. Redundant Connection 冗余的连接

Leetcode之并查集专题-684. 冗余连接(Redundant Connection)