高等数学 —— 连续

Posted rcklos

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了高等数学 —— 连续相关的知识,希望对你有一定的参考价值。

For the ideal that I hold near to my heart, I‘d not regret a thousand times to die.
亦余心之所善兮,虽九死其尤未悔。

高等数学(1) —— 连续

题目得刷过去才行。


目录

1. 函数的连续性与间断点1.1 函数的连续性1.2 函数的间断点2. 连续函数的运算于初等函数的连续性2.1 连续函数的和差积商的连续性2.2 反函数与复合函数的连续性2.3 基本初等函数的连续性3. 闭区间上连续函数的性质3.1 有界性与最大值最小值定理3.2 零点定理与介值定理第一章——完


1. 函数的连续性与间断点

1.1 函数的连续性

连续: 只要函数的在某一点处有定义,且其极限值与函数值相等,即在该点处连续。

左连续: 函数在某一点有定义,左极限值与函数值相等。

右连续: 函数在某一点有定义,右极限值与函数值相等。


1.2 函数的间断点

间断点: 也称不连续点,以下三中一即为间断点,

  • 在某一点处没有定义
技术图片
  • 在某一点处有定义,但极限不存在。
技术图片
  • 在某一点处有定义,但极限值不等于函数值。
技术图片

第一类间断点: 左右极限都存在的间断点。

  • 左右极限相等就叫可去间断点
  • 左右极限不相等即跳跃间断点

第二类间断点: 不满足第一类间断点定义的间断点。

  • 震荡间断点:
技术图片
  • 无穷间断点:
技术图片

计算相关就是第一类间断点用的多,第二类常用于判断类型。


2. 连续函数的运算于初等函数的连续性

2.1 连续函数的和差积商的连续性

只要商时,分母不为零即都连续

2.2 反函数与复合函数的连续性

反函数连续: 只要原函数在指定区间单调且连续,则反函数也会在对应区间单调且连续。

复合函数: 逐层判断连续。


2.3 基本初等函数的连续性

基本初等函数的连续性: 在其定义域内都是连续的。

定义区间:一定包含在定义域内的区间。
初等函数的连续性: 在其定义区间内连续。


3. 闭区间上连续函数的性质

3.1 有界性与最大值最小值定理

有界性与最大值最小值定理: 在闭区间上的连续函数在该区间上必定有界且存在最大值和最小值。

3.2 零点定理与介值定理

零点定理: 连续函数f(x)在区间[a,b],如果,

技术图片

则在区间[a,b]必定存在零点。

介值定理: 连续函数在闭区间内有最大值M和最小值m,则在这个闭区间内存在一个数a,使得f(a)的介于Mm之间。


第一章——完

第一章三大殿:映射殿极限殿连续殿结束施工。




以上是关于高等数学 —— 连续的主要内容,如果未能解决你的问题,请参考以下文章

数学分析的主线,高等数学的一切:连续函数与“有理”分析

人工智能数学基础01--高等数学基础(函数的连续和间断)

人工智能数学基础01--高等数学基础(函数的连续和间断)

人工智能数学基础01--高等数学基础(函数的连续和间断)

人工智能数学基础01--高等数学基础(函数的连续和间断)

高等数学笔记