人工智能?使用Python和dlib进行人脸检测

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了人工智能?使用Python和dlib进行人脸检测相关的知识,希望对你有一定的参考价值。

本人从事Python以及近9年了,目前在向人工智能进军,遇到不懂得可以骚扰我:154.7251666,Q记着,别加错了,想学Python的可以来问我学习方法,想要源代码的也可以滴滴我

技术分享图片

“Dlib是一个现代化的C ++工具包,包含用于创建复杂软件的机器学习算法和工具”。它使您能够直接在Python中运行许多任务,其中一个例子就是人脸检测。

安装dlib并不像只做一个“pip install dlib”那么简单,因为要正确配置和编译dlib,您首先需要安装其他系统依赖项。如果你按照这里描述的步骤,它应该很容易让dlib启动并运行。(在本文中,我将介绍如何在Mac上安装dlib,但如果您使用的是Ubuntu,请务必查看相关资源部分的链接。)

你需要确定的第一件事是你已经安装和更新了Hombrew。如果您需要安装它,请将其粘贴到终端中:

技术分享图片

或者,如果您需要更新Hombrew,请输入以下内容:

技术分享图片

您现在可以使用Homebrew来安装CMake,Boost.Python,以及在您的系统中正确配置和编译dlib所需的两个依赖关系:

技术分享图片

最后,您需要手动下载并安装XQuartz。

您现在已准备好安装dlib。我们将通过首先为这个项目创建一个孤立的虚拟环境来做到这一点。我将使用virtualenv,但您可以使用任何您熟悉的虚拟环境工具,包括Python的venv模块。需要scikit-image库才能读取我们稍后将传递给dlib的图像文件,因此我们还需要pip安装它:

技术分享图片

就是这样。有了这个,你应该有可用的dlib。

Dlib

Dlib提供了不同的脸部检测算法。我将在这里使用的是基于CNN的人脸检测器。您可以下载预训练模型:https://github.com/davisking/dlib-models。由于使用此模型的计算成本很高,因此最好在GPU上执行以下代码。使用CPU也可以,但速度会更慢。

要在下面的要点中运行人脸检测代码,我建议首先在虚拟环境中再安装两个库。这些库将使与代码交互和可视化结果更容易:

技术分享图片

安装完库后,您需要确保:

  • 下载预训练模型(http://dlib.net/files/mmod_human_face_detector.dat.bz2)并将其存储在项目的根目录中

  • 创建一个名为'faces'的新目录,在该目录中存储带有希望检测的脸部的.jpg。

有了这个,你终于准备好开始在图片中检测脸部了!您可以通过在Jupyter Notebook中运行以下代码来完成此操作

技术分享图片

技术分享图片

在运行代码之后,您应该看到图像中的脸部周围出现蓝色方块,如果您问我,考虑到我们只写了几行代码,这非常棒!

技术分享图片


以上是关于人工智能?使用Python和dlib进行人脸检测的主要内容,如果未能解决你的问题,请参考以下文章

使用dlib人脸检测模型进行人脸活体检测:眨眼检测

Python 3 利用 Dlib 19.7 和 sklearn机器学习模型 实现人脸微笑检测

使用dlib应用(HOG和CNN)进行人脸检测

dlib库包的介绍与使用,opencv+dlib检测人脸框opencv+dlib进行人脸68关键点检测,opencv+dlib实现人脸识别,dlib进行人脸特征聚类dlib视频目标跟踪

在 dlib 中获取检测到人脸的概率[关闭]

Python+OpenCV+dlib实现人脸检测与表情识别