数据挖掘第四周作业

Posted 琼觞两盏

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据挖掘第四周作业相关的知识,希望对你有一定的参考价值。

第一部分——商品零售购物篮分析

代码一:查看数据特征

import numpy as np
import pandas as pd
inputfile="D:\\python_data\\GoodsOrder.csv"   #输入的数据文件
data=pd.read_csv(inputfile,encoding=\'gbk\')  #读取数据
data.info() #查看数据属性
data=data[\'id\']
description=[data.count(),data.min(),data.max()]    #依次计算总数、最小值、最大值
description=pd.DataFrame(description,index=[\'Count\',\'Min\',\'Max\']).T
print(\'描述性统计结果:\\n\',np.round(description))   #输出结果<class \'pandas.core.frame.DataFrame\'>RangeIndex: 43367 entries, 0 to 43366
Data columns (total 2 columns):
 #   Column  Non-Null Count  Dtype 
---  ------  --------------  ----- 
 0   id      43367 non-null  int64 
 1   Goods   43367 non-null  object
dtypes: int64(1), object(1)
memory usage: 677.7+ KB
描述性统计结果:
    Count  Min   Max
0  43367    1  9835

代码二:分析热销商品
inputfile = "D:\\python_data\\GoodsOrder.csv"
data = pd.read_csv(inputfile,encoding=\'gbk\')
group = data.groupby([\'Goods\']).count().reset_index()
sorted = group.sort_values(\'id\',ascending=False)
print(\'销量排行前10商品的销量:\\n\',sorted[:10])
销量排行前10商品的销量:
      Goods    id
7     全脂牛奶  2513
8     其他蔬菜  1903
155    面包卷  1809
134     苏打  1715
150     酸奶  1372
99     瓶装水  1087
70   根茎类蔬菜  1072
85    热带水果  1032
143    购物袋   969
160     香肠   924

import matplotlib.pyplot as plt
x = sorted[:10][\'Goods\']
y = sorted[:10][\'id\']
plt.figure(figsize=(8,4))
plt.barh(x,y)
plt.rcParams[\'font.sans-serif\'] = \'SimHei\'
plt.xlabel(\'销量\')
plt.ylabel(\'商品类别\')
plt.title(\'商品的销量TOP10 3129\')
plt.show()

data_nums = data.shape[0]
for idnex,row in sorted[:10].iterrows():
    print(row[\'Goods\'],row[\'id\'],row[\'id\']/data_nums)
全脂牛奶 2513 0.05794728710770863
其他蔬菜 1903 0.0438812922268084
面包卷 1809 0.04171374547466968
苏打 1715 0.039546198722530956
酸奶 1372 0.031636958978024765
瓶装水 1087 0.025065141697604168
根茎类蔬菜 1072 0.024719256577582033
热带水果 1032 0.023796896257523
购物袋 969 0.022344178753430026
香肠 924 0.021306523393363617

代码三:各类别商品的销量及其占比
inputfile1 = "D:\\python_data\\GoodsOrder.csv"
inputfile2 = "D:\\python_data\\GoodsTypes.csv"
data = pd.read_csv(inputfile1,encoding = \'gbk\')
types = pd.read_csv(inputfile2,encoding = \'gbk\')  # 读入数据

group = data.groupby([\'Goods\']).count().reset_index()
sort = group.sort_values(\'id\',ascending = False).reset_index()
data_nums = data.shape[0]  # 总量
del sort[\'index\']

sort_links = pd.merge(sort,types)  # 根据type合并两个datafreame

# 根据类别求和,每个商品类别的总量,并排序
sort_link = sort_links.groupby([\'Types\']).sum().reset_index()
sort_link = sort_link.sort_values(\'id\',ascending = False).reset_index()
del sort_link[\'index\']  # 删除“index”列

# 求百分比,然后更换列名,最后输出到文件
sort_link[\'count\'] = sort_link.apply(lambda line: line[\'id\']/data_nums,axis=1)
sort_link.rename(columns = \'count\':\'percent\',inplace = True)
print(\'各类别商品的销量及其占比:\\n\',sort_link)
outfile1 = "D:\\python_data\\percent.csv"
sort_link.to_csv(outfile1,index = False,header = True,encoding=\'gbk\')  # 保存结果

# 画饼图展示每类商品销量占比
import matplotlib.pyplot as plt
data = sort_link[\'percent\']
labels = sort_link[\'Types\']
plt.figure(figsize=(8, 6))  # 设置画布大小
plt.pie(data,labels=labels,autopct=\'%1.2f%%\')
plt.rcParams[\'font.sans-serif\'] = \'SimHei\'
plt.title(\'每类商品销量占比3129\',fontdict=\'size\': 20)  # 设置标题
plt.show()

各类别商品的销量及其占比:
Types id percent
0 非酒精饮料 7594 0.175110
1 西点 7192 0.165840
2 果蔬 7146 0.164780
3 米粮调料 5185 0.119561
4 百货 5141 0.118546
5 肉类 4870 0.112297
6 酒精饮料 2287 0.052736
7 食品类 1870 0.043120
8 零食 1459 0.033643
9 熟食 541 0.012475

 

代码四:非酒精饮料内部商品的销量及其占比
# 先筛选“非酒精饮料”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links[\'Types\'] == \'非酒精饮料\']  # 挑选商品类别为“非酒精饮料”并排序
child_nums = selected[\'id\'].sum()  # 对所有的“非酒精饮料”求和
selected[\'child_percent\'] = selected.apply(lambda line: line[\'id\']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = \'id\':\'count\',inplace = True)
print(\'非酒精饮料内部商品的销量及其占比:\\n\',selected)
outfile2 = "D:\\python_data\\percent.csv"
sort_link.to_csv(outfile2,index = False,header = True,encoding=\'gbk\')  # 输出结果

0 全脂牛奶 2513 非酒精饮料 0.330919
3 苏打 1715 非酒精饮料 0.225836
5 瓶装水 1087 非酒精饮料 0.143139
16 水果/蔬菜汁 711 非酒精饮料 0.093627
22 咖啡 571 非酒精饮料 0.075191
38 超高温杀菌的牛奶 329 非酒精饮料 0.043324
45 其他饮料 279 非酒精饮料 0.036740
51 一般饮料 256 非酒精饮料 0.033711
101 速溶咖啡 73 非酒精饮料 0.009613
125 茶 38 非酒精饮料 0.005004
144 可可饮料 22 非酒精饮料 0.002897

# 画饼图展示非酒精饮品内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected[\'child_percent\']
labels = selected[\'Goods\']
plt.figure(figsize = (8,6))  # 设置画布大小
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = \'%1.2f%%\',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams[\'font.sans-serif\'] = \'SimHei\'
plt.title("非酒精饮料内部各商品的销量占比3129",fontdict=\'size\': 20)  # 设置标题
plt.axis(\'equal\')
plt.show()  # 展示图形

 



代码五:数据转换
inputfile=open("D:\\python_data\\GoodsOrder.csv")
data = pd.read_csv(inputfile,encoding = \'gbk\')

# 根据id对“Goods”列合并,并使用“,”将各商品隔开
data[\'Goods\'] = data[\'Goods\'].apply(lambda x:\',\'+x)
data = data.groupby(\'id\').sum().reset_index()

# 对合并的商品列转换数据格式
data[\'Goods\'] = data[\'Goods\'].apply(lambda x :[x[1:]])
data_list = list(data[\'Goods\'])

# 分割商品名为每个元素
data_translation = []
for i in data_list:
    p = i[0].split(\',\')
    data_translation.append(p)
print(\'数据转换结果的前5个元素:\\n\', data_translation[0:5])

数据转换结果的前5个元素:
[[\'柑橘类水果\', \'人造黄油\', \'即食汤\', \'半成品面包\'], [\'咖啡\', \'热带水果\', \'酸奶\'], [\'全脂牛奶\'], [\'奶油乳酪\', \'肉泥\', \'仁果类水果\', \'酸奶\'], [\'炼乳\', \'长面包\', \'其他蔬菜\', \'全脂牛奶\']]

 代码六:构建关联规则模型

from numpy import *


def loadDataSet():
    return [[\'a\', \'c\', \'e\'], [\'b\', \'d\'], [\'b\', \'c\'], [\'a\', \'b\', \'c\', \'d\'], [\'a\', \'b\'], [\'b\', \'c\'], [\'a\', \'b\'],
            [\'a\', \'b\', \'c\', \'e\'], [\'a\', \'b\', \'c\'], [\'a\', \'c\', \'e\']]


def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
    C1.sort()
    # 映射为frozenset唯一性的,可使用其构造字典
    return list(map(frozenset, C1))


# 从候选K项集到频繁K项集(支持度计算)
def scanD(D, Ck, minSupport):
    ssCnt = 
    for tid in D:  # 遍历数据集
        for can in Ck:  # 遍历候选项
            if can.issubset(tid):  # 判断候选项中是否含数据集的各项
                if not can in ssCnt:
                    ssCnt[can] = 1  # 不含设为1
                else:
                    ssCnt[can] += 1  # 有则计数加1
    numItems = float(len(D))  # 数据集大小
    retList = []  # L1初始化
    supportData =   # 记录候选项中各个数据的支持度
    for key in ssCnt:
        support = ssCnt[key] / numItems  # 计算支持度
        if support >= minSupport:
            retList.insert(0, key)  # 满足条件加入L1中
            supportData[key] = support
    return retList, supportData


def calSupport(D, Ck, min_support):
    dict_sup = 
    for i in D:
        for j in Ck:
            if j.issubset(i):
                if not j in dict_sup:
                    dict_sup[j] = 1
                else:
                    dict_sup[j] += 1
    sumCount = float(len(D))
    supportData = 
    relist = []
    for i in dict_sup:
        temp_sup = dict_sup[i] / sumCount
        if temp_sup >= min_support:
            relist.append(i)
            # 此处可设置返回全部的支持度数据(或者频繁项集的支持度数据)
            supportData[i] = temp_sup
    return relist, supportData


# 改进剪枝算法
def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i + 1, lenLk):  # 两两组合遍历
            L1 = list(Lk[i])[:k - 2]
            L2 = list(Lk[j])[:k - 2]
            L1.sort()
            L2.sort()
            if L1 == L2:  # 前k-1项相等,则可相乘,这样可防止重复项出现
                # 进行剪枝(a1为k项集中的一个元素,b为它的所有k-1项子集)
                a = Lk[i] | Lk[j]  # a为frozenset()集合
                a1 = list(a)
                b = []
                # 遍历取出每一个元素,转换为set,依次从a1中剔除该元素,并加入到b中
                for q in range(len(a1)):
                    t = [a1[q]]
                    tt = frozenset(set(a1) - set(t))
                    b.append(tt)
                t = 0
                for w in b:
                    # 当b(即所有k-1项子集)都是Lk(频繁的)的子集,则保留,否则删除。
                    if w in Lk:
                        t += 1
                if t == len(b):
                    retList.append(b[0] | b[1])
    return retList


def apriori(dataSet, minSupport=0.2):
    # 前3条语句是对计算查找单个元素中的频繁项集
    C1 = createC1(dataSet)
    D = list(map(set, dataSet))  # 使用list()转换为列表
    L1, supportData = calSupport(D, C1, minSupport)
    L = [L1]  # 加列表框,使得1项集为一个单独元素
    k = 2
    while (len(L[k - 2]) > 0):  # 是否还有候选集
        Ck = aprioriGen(L[k - 2], k)
        Lk, supK = scanD(D, Ck, minSupport)  # scan DB to get Lk
        supportData.update(supK)  # 把supk的键值对添加到supportData里
        L.append(Lk)  # L最后一个值为空集
        k += 1
    del L[-1]  # 删除最后一个空集
    return L, supportData  # L为频繁项集,为一个列表,1,2,3项集分别为一个元素


# 生成集合的所有子集
def getSubset(fromList, toList):
    for i in range(len(fromList)):
        t = [fromList[i]]
        tt = frozenset(set(fromList) - set(t))
        if not tt in toList:
            toList.append(tt)
            tt = list(tt)
            if len(tt) > 1:
                getSubset(tt, toList)


def calcConf(freqSet, H, supportData, ruleList, minConf=0.7):
    for conseq in H:  # 遍历H中的所有项集并计算它们的可信度值
        conf = supportData[freqSet] / supportData[freqSet - conseq]  # 可信度计算,结合支持度数据
        # 提升度lift计算lift = p(a & b) / p(a)*p(b)
        lift = supportData[freqSet] / (supportData[conseq] * supportData[freqSet - conseq])

        if conf >= minConf and lift > 1:
            print(freqSet - conseq, \'-->\', conseq, \'支持度\', round(supportData[freqSet], 6), \'置信度:\', round(conf, 6),
                  \'lift值为:\', round(lift, 6))
            ruleList.append((freqSet - conseq, conseq, conf))


# 生成规则
def gen_rule(L, supportData, minConf=0.7):
    bigRuleList = []
    for i in range(1, len(L)):  # 从二项集开始计算
        for freqSet in L[i]:  # freqSet为所有的k项集
            # 求该三项集的所有非空子集,1项集,2项集,直到k-1项集,用H1表示,为list类型,里面为frozenset类型,
            H1 = list(freqSet)
            all_subset = []
            getSubset(H1, all_subset)  # 生成所有的子集
            calcConf(freqSet, all_subset, supportData, bigRuleList, minConf)
    return bigRuleList


if __name__ == \'__main__\':
    dataSet = data_translation
    L, supportData = apriori(dataSet, minSupport=0.02)
    rule = gen_rule(L, supportData, minConf=0.35)

frozenset(\'水果/蔬菜汁\') --> frozenset(\'全脂牛奶\') 支持度 0.02664 置信度: 0.368495 lift值为: 1.44216
frozenset(\'人造黄油\') --> frozenset(\'全脂牛奶\') 支持度 0.024199 置信度: 0.413194 lift值为: 1.617098
frozenset(\'仁果类水果\') --> frozenset(\'全脂牛奶\') 支持度 0.030097 置信度: 0.397849 lift值为: 1.557043
frozenset(\'牛肉\') --> frozenset(\'全脂牛奶\') 支持度 0.021251 置信度: 0.405039 lift值为: 1.58518
frozenset(\'冷冻蔬菜\') --> frozenset(\'全脂牛奶\') 支持度 0.020437 置信度: 0.424947 lift值为: 1.663094
frozenset(\'本地蛋类\') --> frozenset(\'其他蔬菜\') 支持度 0.022267 置信度: 0.350962 lift值为: 1.813824
frozenset(\'黄油\') --> frozenset(\'其他蔬菜\') 支持度 0.020031 置信度: 0.361468 lift值为: 1.868122
frozenset(\'本地蛋类\') --> frozenset(\'全脂牛奶\') 支持度 0.029995 置信度: 0.472756 lift值为: 1.850203
frozenset(\'黑面包\') --> frozenset(\'全脂牛奶\') 支持度 0.025216 置信度: 0.388715 lift值为: 1.521293
frozenset(\'糕点\') --> frozenset(\'全脂牛奶\') 支持度 0.033249 置信度: 0.373714 lift值为: 1.462587
frozenset(\'酸奶油\') --> frozenset(\'其他蔬菜\') 支持度 0.028876 置信度: 0.402837 lift值为: 2.081924
frozenset(\'猪肉\') --> frozenset(\'其他蔬菜\') 支持度 0.021657 置信度: 0.375661 lift值为: 1.941476
frozenset(\'酸奶油\') --> frozenset(\'全脂牛奶\') 支持度 0.032232 置信度: 0.449645 lift值为: 1.759754
frozenset(\'猪肉\') --> frozenset(\'全脂牛奶\') 支持度 0.022166 置信度: 0.38448 lift值为: 1.504719
frozenset(\'根茎类蔬菜\') --> frozenset(\'全脂牛奶\') 支持度 0.048907 置信度: 0.448694 lift值为: 1.756031
frozenset(\'根茎类蔬菜\') --> frozenset(\'其他蔬菜\') 支持度 0.047382 置信度: 0.434701 lift值为: 2.246605
frozenset(\'凝乳\') --> frozenset(\'全脂牛奶\') 支持度 0.026131 置信度: 0.490458 lift值为: 1.919481
frozenset(\'热带水果\') --> frozenset(\'全脂牛奶\') 支持度 0.042298 置信度: 0.403101 lift值为: 1.577595
frozenset(\'柑橘类水果\') --> frozenset(\'全脂牛奶\') 支持度 0.030503 置信度: 0.36855 lift值为: 1.442377
frozenset(\'黄油\') --> frozenset(\'全脂牛奶\') 支持度 0.027555 置信度: 0.497248 lift值为: 1.946053
frozenset(\'酸奶\') --> frozenset(\'全脂牛奶\') 支持度 0.056024 置信度: 0.401603 lift值为: 1.571735
frozenset(\'其他蔬菜\') --> frozenset(\'全脂牛奶\') 支持度 0.074835 置信度: 0.386758 lift值为: 1.513634
frozenset(\'酸奶\', \'其他蔬菜\') --> frozenset(\'全脂牛奶\') 支持度 0.022267 置信度: 0.512881 lift值为: 2.007235
frozenset(\'酸奶\', \'全脂牛奶\') --> frozenset(\'其他蔬菜\') 支持度 0.022267 置信度: 0.397459 lift值为: 2.054131
frozenset(\'其他蔬菜\', \'根茎类蔬菜\') --> frozenset(\'全脂牛奶\') 支持度 0.023183 置信度: 0.48927 lift值为: 1.914833
frozenset(\'全脂牛奶\', \'根茎类蔬菜\') --> frozenset(\'其他蔬菜\') 支持度 0.023183 置信度: 0.474012 lift值为: 2.44977

代码七:西点内部商品的销量及其占比

 

import seaborn as sns
#西点
selected = sort_links.loc[sort_links[\'Types\'] == \'西点\']  # 挑选商品类别为“西点”并排序
# 绘制西点类别中不同商品占比的条形图
plt.figure(figsize=(10, 5))
sns.barplot(x=list(selected["id"]), y=list(selected["Goods"]))
plt.xlabel("商品销量")
plt.ylabel("商品类别")
plt.rcParams[\'font.sans-serif\'] = \'SimHei\'
plt.title("西点类别中不同商品的销量3129")
plt.show()

# 先筛选“西点”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links[\'Types\'] == \'西点\']  # 挑选商品类别为“西点”并排序
child_nums = selected[\'id\'].sum()  # 对所有的“西点”求和
selected[\'child_percent_xidian\'] = selected.apply(lambda line: line[\'id\']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = \'id\':\'count\',inplace = True)
print(\'西点内部商品的销量及其占比:\\n\',selected)
outfile3 = "D:\\python_data\\child_percent_xidian.csv"
sort_link.to_csv(outfile3,index = False,header = True,encoding=\'gbk\')  # 输出结果

# 画饼图展示西点内部各商品的销量占比
data = selected[\'child_percent_xidian\']
labels = selected[\'Goods\']
plt.figure(figsize = (8,6))  # 设置画布大小
explode = (0.05,0.04,0.04,0.05,0.06,0.07,0.03,0.03,0.03,0.02,0.03,0.02,0.02,0.02,0.02,0.08,0.3,0.34,0.38,0.4,0.8)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = \'%1.2f%%\',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams[\'font.sans-serif\'] = \'SimHei\'
plt.title("西点内部各商品的销量占比3129",fontdict=\'size\': 20)  # 设置标题
plt.axis(\'equal\')
plt.show()  # 展示图形

 

2 面包卷 1809 西点 0.251529
10 糕点 875 西点 0.121663
18 黑面包 638 西点 0.088710
31 白面包 414 西点 0.057564
32 奶油乳酪 390 西点 0.054227
33 威化饼 378 西点 0.052558
34 咸点心 372 西点 0.051724
35 长面包 368 西点 0.051168
36 甜点 365 西点 0.050751
48 酪 275 西点 0.038237
54 切片奶酪 241 西点 0.033509
55 硬奶酪 241 西点 0.033509
64 半成品面包 174 西点 0.024194
68 软奶酪 168 西点 0.023359
74 风味蛋糕 130 西点 0.018076
92 甜食 89 西点 0.012375
94 特色奶酪 84 西点 0.011680
103 面包干 68 西点 0.009455
116 干面包 50 西点 0.006952
117 凝乳酪 50 西点 0.006952
152 奶油 13 西点 0.001808

 

以上是关于数据挖掘第四周作业的主要内容,如果未能解决你的问题,请参考以下文章

作业三(第四周)

第四周作业

Python数据分析第四周作业随笔

第四周网络攻防实践作业

第四周作业。

第四周作业