paddlepaddle十二生肖分类之模型(ResNet)构建
Posted 修炼之路
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了paddlepaddle十二生肖分类之模型(ResNet)构建相关的知识,希望对你有一定的参考价值。
导读
这篇文章我们主要来介绍一下如何来使用paddlepaddle构建一个深度学习模型,这里我们以构建ResNet
为例
ResNet模型
ResNet是2016年由何凯明提出来的,到现在为止我们还是会经常使用到它。我们来看看它的结构
在论文中ResNet主要包含了五种结构,ResNet18
、ResNet34
、ResNet50
和ResNet101
以及ResNet152
,实际上根据ResNet的网络结构可以拓展到上千层,因为ResNet的核心结构残差块
可以使得构建深层次的网络而不出现梯度消失
的情况。
通过上面ResNet表格结构图可以发现,ResNet主要由5个卷积层
和一个全连接层
组成。下面我们来逐步拆分:
- conv1:由一个为步长为2的7x7通道数为64的卷积组成,conv1将输入为
224x224x3
的图片转换为112x112x64
- conv2:由一个步长为2的3x3最大池化卷积和堆叠的block组成,输出的size为56x56
- conv3:由堆叠的block组成,输出的size为28x28
- conv4:由堆叠的block组成,输出的size为14x14
- conv5:由堆叠的block组成,输出的size伪7x7
- average pool和softmax:输出1x1x1000,1000表示有1000个不同的lable,softmax将输出的label归一化到[0,1]用来表示每个类别的概率
注
:卷积核3x3,步长为2的卷积还可以起到下采样的作用。
ResNet的网络结构图
ResNet网络之所以能够堆叠上百层甚至上千层,主要得益于它的残差结构
,它能够有效的减轻梯度消失问题。残差的结构
如下图所示,block
最终的输出由两部分组成,分别是卷积的输出结果
和输入
模型构建
ResNet
网络主要由两种不同的Block
组成,ResNet18和ResNet34的block是BasicBlock
,而ResNet50、ResNet101以及ResNet152的block是BottleneckBlock
。
- BasicBlock
import paddle
from paddle import nn
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self,inchannels,channels,stride=1,downsample=None,
groups=1,base_width=64,dilation=1,norm_layer=None):
"""resnet18和resnet32的block
:param inchannels:block输入的通道数
:param channels:block输出的通道数
:param stride:卷积移动的步长
:param downsample:下采样
:param groups:
:param base_width:
:param dilation:
:param norm_layer: 标准化
"""
super(BasicBlock, self).__init__()
if norm_layer is not None:
norm_layer = nn.BatchNorm2D
if dilation > 1:
raise("BasicBlock not support dilation > 1")
#bias_attr设置为False表示卷积没有偏置项
self.conv1 = nn.Conv2D(inchannels,channels,3,padding=1,stride=stride,bias_attr=False)
self.bn1 = norm_layer(channels)
# stride默认为1,kernel_size为3,padding为1等价于same的卷积
self.conv2 = nn.Conv2D(channels,channels,3,padding=1,bias_attr=False)
self.bn2 = norm_layer(channels)
self.relu = nn.ReLU()
self.downsample = downsample
self.stride = stride
def forward(self, x):
input = x
#block的第一层卷积
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
#block的第二层卷积
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
input = self.downsample(x)
#残差块
out += input
out = self.relu(out)
return out
BasicBlock
的结果比较简单,主要由三部分组成,两个卷积层和一个残差块
- BottleneckBlock
class BottleneckBlock(nn.Layer):
expansion = 4
def __init__(self,inchannels,channels,stride=1,downsample=None,
groups=1,base_width=64,dilation=1,norm_layer=None):
"""resnet50/101/151的block
:param inchannels:block的输入通道数
:param channels:block的输出通道数
:param stride:卷积的步长
:param downsample:下采样
:param groups:
:param base_width:
:param dilation:
:param norm_layer:
"""
super(BottleneckBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2D
width = int(channels * (base_width / 64)) * groups
self.conv1 = nn.Conv2D(inchannels,width,1,bias_attr=False)
self.bn1 = norm_layer(width)
self.conv2 = nn.Conv2D(width,width,3,
padding=dilation,
stride=stride,
dilation=dilation,
bias_attr=False)
self.bn2 = norm_layer(width)
self.conv3 = nn.Conv2D(width,channels*self.expansion,1,bias_attr=False)
self.bn3 = norm_layer(channels * self.expansion)
self.relu = nn.ReLU()
self.downsample = downsample
self.stride = stride
def forward(self,x):
input = x
#第一层卷积层
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
#第二层卷积层
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
#第三层卷积层
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
input = self.downsample(x)
#残差块
out += input
out = self.relu(out)
return out
BottleneckBlock
相对于BasicBlock
中间多了一个由64个通道3x3
的卷积层组成,最后一个卷积层输出的通道数是BasicBlock
的2倍
- ResNet网络
class ResNet(nn.Layer):
def __init__(self,block,depth,num_classes=1000,with_pool=True):
super(ResNet, self).__init__()
layer_cfg =
18:[2,2,2,2],
34:[3,4,6,3],
50:[3,4,6,3],
101:[3,4,23,3],
152:[3,8,36,3]
layers = layer_cfg[depth]
self.num_classes = num_classes
self.with_pool = with_pool
self._norm_layer = nn.BatchNorm2D
self.inchannels = 64
self.dilation = 1
self.conv1 = nn.Conv2D(3,self.inchannels,kernel_size=7,
stride=2,padding=3,bias_attr=False)
self.bn1 = self._norm_layer(self.inchannels)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2D(kernel_size=3,stride=2,padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
if with_pool:
self.avgpool = nn.AdaptiveAvgPool2D((1, 1))
if num_classes > 0:
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self,block,channels,blocks,stride=1,dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inchannels != channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2D(
self.inchannels,
channels * block.expansion,
kernel_size=1,
stride=stride,
bias_attr=False
),
norm_layer(channels * block.expansion)
)
layers = []
layers.append(block(self.inchannels,channels,stride,downsample,1,64,
previous_dilation,norm_layer))
self.inchannels = channels * block.expansion
for _ in range(1,blocks):
layers.append(block(self.inchannels,channels,norm_layer=norm_layer))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if self.with_pool:
x = self.avgpool(x)
if self.num_classes > 0:
x = paddle.flatten(x,1)
x = self.fc(x)
return x
- 查看ResNet网络结构
from paddle import summary
resnet18 = ResNet(BasicBlock,18)
summary(resnet18,(1,3,224,224))
以上是关于paddlepaddle十二生肖分类之模型(ResNet)构建的主要内容,如果未能解决你的问题,请参考以下文章
paddlepaddle十二生肖分类之模型(ResNet)构建
paddlepaddle十二生肖分类之模型(ResNet)构建