与63. 不同路径 II 62. 不同路径
思路类似,按题号刷题的强迫症终于尝到了甜头233333
同样使用动态规划
f[i][j]表示,在(i,j)处的最短路径和。由于只能往右走或者往下走,显然,状态转换方程为:
f[i][j] = min(f[i-1][j],f[i][j-1])+g[i][j]
写详细点就是:
if (i == 0 && j == 0) {
f[i][j] = grid[0][0];
} else if (i - 1 < 0) {
f[i][j] = f[i][j - 1] + grid[i][j];
} else if (j - 1 < 0) {
f[i][j] = f[i - 1][j] + grid[i][j];
} else {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
}
代码:
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length;
if (m == 0) {
return 0;
}
int n = grid[0].length;
int[][] f = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0 && j == 0) {
f[i][j] = grid[0][0];
} else if (i - 1 < 0) {
f[i][j] = f[i][j - 1] + grid[i][j];
} else if (j - 1 < 0) {
f[i][j] = f[i - 1][j] + grid[i][j];
} else {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
}
}
}
return f[m - 1][n - 1];
}
}