堆和堆排序

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了堆和堆排序相关的知识,希望对你有一定的参考价值。

参考技术A 1,堆是一个完全二叉树;
完全二叉树要求除了最后一层,其他层的节点都是满的,最后一层的节点都靠左排列。
2,堆中每个节点都必须大于等于(或小于等于)其子树中每个节点的值。
堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。
3,对于每个节点的值都大于等于子树中每个节点值的堆,叫作“大顶堆”。对于每个节点的值都小于等于子树中每个节点值的堆,叫“小顶堆”。

要实现一个堆,要先知道堆都支持哪些操作,已及如何存储一个堆。
1,如何存储一个堆:
完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。因为不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。
2,往堆中插入一个元素
往堆中插入一个元素后,需要继续满足堆的两个特性
(1)如果把新插入的元素放到堆的最后,则不符合堆的特性了,于是需要进行调整,让其重新满足堆的特性,这个过程叫做 堆化(heapify)
(2)堆化实际上有两种,从下往上和从上往下
(3)从下往上的堆化方法:
堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。

(1)从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,则堆顶元素存储的就是堆中数据的最大值或最小值。
(2)假设是大顶堆,堆堆顶元素就是最大的元素,但删除堆顶元素之后,就需要把第二大元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后在迭代地删除第二大节点,以此类推,直到叶子节点被删除。

但这种方式会使堆化出来的堆不满足完全二叉树的特性
(3)可以把最后一个节点放到堆顶,然后利用同样的父子节点对比方法,对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止,这是从上往下的堆化方法。

一个包含n个节点的完全二叉树,树的高度不会超过log2n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,即O(log n)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以往堆中插入一个元素和删除堆顶元素的时间复杂度都是O(log n)。

(1)排序方法有时间复杂度是O(n^2)的冒泡排序,插入排序,选择排序,有时间复杂度是O(nlogn)的归并排序,快速排序,线性排序。

(2)借助堆这种数据结构实现的排序算法就叫作堆排序,这种排序方法的时间复杂度非常稳定,是O(nlogn),并且它还是原地排序算法。
堆排序的过程大致分解为两大步骤:建堆和排序
(3)建堆:
1,首先将数组原地建成一个堆。“原地”:是指不借助另一个数组,就在原地数组上操作。
2,建堆有两种思路:
第一种:在堆中插入一个元素的思路。
尽管数组中包含n个数据,但是可以假设起初堆中只包含一个数据,就是下标为1的数据。然后,调用插入方法,将将下标从2到n的数据依次插入到堆中,这样就将包含n个数据的数组,组织成了堆
第二种:是从后往前处理数组,并且每个数据都是从上往下堆化。
第二种和第一种思路截然相反,第一种建堆思路的处理过程是从前往后处理数据,并且每个数据插入堆中时,都是从下往上堆化。
对下标从n/2开始到1的数据进行堆化,下标是n/2 + 1到n的节点,是叶子节点,不需堆化
3,建堆的时间复杂度
每个节点堆化的时间复杂度是O(logn),则n/2+1个节点堆化的总时间复杂度是O(n)。
①:因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这个节点高度k成正比。
(4)排序:
建堆结束后,数组中的数据已是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。
将它和最后一个元素交换,最大元素就放到了下标为n的位置
这个过程有点类似“删除堆顶元素”的操作,当堆顶元素移除后,把下标为n的元素放到堆顶,然后在通过堆化的方法,将剩下的n-1个元素重新构建成堆。堆化完成之后,在取堆顶元素,放到下标是n-1的位置,一直重复这个过程,直到最后堆中只剩下标为1的一个元素,排序工作就完成了。

(5)时间,空间复杂度,以及稳定性分析
①:整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。
②:堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是O(n),排序过程的时间复杂度是O(nlogn),所以堆排序的时间复杂度是O(nlogn)
③:堆排序不是稳定的排序算法,可能改变值相等的数据原始相对顺序。

堆和堆的应用:堆排序和优先队列


来源: Spground 

spground.github.io/2017/07/07/堆和堆的应用:堆排序和优先队列/


1.堆

堆(Heap))是一种重要的数据结构,是实现优先队列(Priority Queues)首选的数据结构。由于堆有很多种变体,包括二项式堆、斐波那契堆等,但是这里只考虑最常见的就是二叉堆(以下简称堆)。

堆是一棵满足一定性质的二叉树,具体的讲堆具有如下性质:父节点的键值总是不大于它的孩子节点的键值(小顶堆), 堆可以分为小顶堆和大顶堆,这里以小顶堆为例,其主要包含的操作有:

  • insert()

  • extractMin

  • peek(findMin)

  • delete(i)

由于堆是一棵形态规则的二叉树,因此堆的父节点和孩子节点存在如下关系:

设父节点的编号为 i, 则其左孩子节点的编号为2*i+1, 右孩子节点的编号为2*i+2
设孩子节点的编号为i, 则其父节点的编号为(i-1)/2

由于二叉树良好的形态已经包含了父节点和孩子节点的关系信息,因此就可以不使用链表而简单的使用数组来存储堆。

要实现堆的基本操作,涉及到的两个关键的函数

  • siftUp(i, x) : 将位置i的元素x向上调整,以满足堆得性质,常常是用于insert后,用于调整堆;

  • siftDown(i, x):同理,常常是用于delete(i)后,用于调整堆;

具体的操作如下:

private void siftUp(int i) {

int key = nums[i];

for (; i > 0;) {

int p = (i - 1) >>> 1;

if (nums[p] <= key)

break;

nums[i] = nums[p];

i = p;

}

nums[i] = key;

}


private void siftDown(int i) {

int key = nums[i];

for (;i < nums.length / 2;) {

int child = (i << 1) + 1;

if (child + 1 < nums.length && nums[child] > nums[child+1])

child++;

if (key <= nums[child])

break;

nums[i] = nums[child];

i = child;

}

nums[i] = key;

  }


可以看到siftUpsiftDown不停的在父节点和子节点之间比较、交换;在不超过logn的时间复杂度就可以完成一次操作。

有了这两个基本的函数,就可以实现上述提及的堆的基本操作。

首先是如何建堆,实现建堆操作有两个思路:

  • 一个是不断地insertinsert后调用的是siftUp

  • 另一个将原始数组当成一个需要调整的堆,然后自底向上地
    在每个位置
    i调用siftDown(i),完成后我们就可以得到一个满足堆性质的堆。这里考虑后一种思路:

通常堆的insert操作是将元素插入到堆尾,由于新元素的插入可能违反堆的性质,因此需要调用siftUp操作自底向上调整堆;堆移除堆顶元素操作是将堆顶元素删除,然后将堆最后一个元素放置在堆顶,接着执行siftDown操作,同理替换堆顶元素也是相同的操作。

建堆

// 建立小顶堆

private void buildMinHeap(int[] nums) {

int size = nums.length;

for (int j = size / 2 - 1; j >= 0; j--)

siftDown(nums, j, size);

}


那么建堆操作的时间复杂度是多少呢?答案是O(n)。虽然siftDown的操作时间是logn,但是由于高度在递减的同时,每一层的节点数量也在成倍减少,最后通过数列错位相减可以得到时间复杂度是O(n)

extractMin
由于堆的固有性质,堆的根便是最小的元素,因此peek操作就是返回根nums[0]元素即可;
若要将
nums[0]删除,可以将末尾的元素nums[n-1]覆盖nums[0],然后将堆得size = size-1,调用siftDown(0)调整堆。时间复杂度为logn

peek
同上

delete(i)

删除堆中位置为i的节点,涉及到两个函数siftUpsiftDown,时间复杂度为logn,具体步骤是,

  • 将元素last覆盖元素i,然后siftDown

  • 检查是否需要siftUp

注意到堆的删除操作,如果是删除堆的根节点,则不用考虑执行siftUp的操作;若删除的是堆的非根节点,则要视情况决定是siftDown还是siftUp操作,两个操作是互斥的。

public int delete(int i) {

int key = nums[i];

//将last元素移动过来,先siftDown; 再视情况考虑是否siftUp

int last = nums[i] = nums[size-1];

size--;

siftDown(i);

//check #i的node的键值是否确实发生改变(是否siftDown操作生效),若发生改变,则ok,否则为确保堆性质,则需要siftUp

if (i < size && nums[i] == last) {

System.out.println("delete siftUp");

siftUp(i);

}

     return key;

}


case 1 :

删除中间节点i21,将最后一个节点复制过来;

由于没有进行siftDown操作,节点i的值仍然为6,因此为确保堆的性质,执行siftUp操作;

堆和堆的应用:堆排序和优先队列

case 2

删除中间节点i,将值为11的节点复制过来,执行siftDown操作;
堆和堆的应用:堆排序和优先队列

由于执行siftDown操作后,节点i的值不再是11,因此就不用再执行siftUp操作了,因为堆的性质在siftDown操作生效后已经得到了保持。

堆和堆的应用:堆排序和优先队列


可以看出,堆的基本操作都依赖于两个核心的函数siftUpsiftDown;较为完整的Heap代码如下:

class Heap {

private final static int N = 100; //default size

private int[] nums;

private int size;

public Heap(int[] nums) {

this.nums = nums;

this.size = nums.length;

heapify(this.nums);

}

public Heap() {

this.nums = new int[N];

}

/**

* heapify an array, O(n)

* @param nums An array to be heapified.

*/

private void heapify(int[] nums) {

for (int j = (size - 1) >> 1; j >= 0; j--)

siftDown(j);

}

/**

* append x to heap

* O(logn)

* @param x

* <a href='http://www.jobbole.com/members/wx1409399284'>@return</a>

*/

public int insert(int x) {

if (size >= this.nums.length)

expandSpace();

size += 1;

nums[size-1] = x;

siftUp(size-1);

return x;

}

/**

* delete an element located in i position.

* O(logn)

* @param i

* <a href='http://www.jobbole.com/members/wx1409399284'>@return</a>

*/

public int delete(int i) {

rangeCheck(i);

int key = nums[i];

//将last元素覆盖过来,先siftDown; 再视情况考虑是否siftUp;

int last = nums[i] = nums[size-1];

size--;

siftDown(i);

//check #i的node的键值是否确实发生改变,若发生改变,则ok,否则为确保堆性质,则需要siftUp;

if (i < size && nums[i] == last)

siftUp(i);

return key;

}

/**

* remove the root of heap, return it's value, and adjust heap to maintain the heap's property.

* O(logn)

* <a href='http://www.jobbole.com/members/wx1409399284'>@return</a>

*/

public int extractMin() {

rangeCheck(0);

int key = nums[0], last = nums[size-1];

nums[0] = last;

size--;

siftDown(0);

return key;

}

/**

* return an element's index, if not exists, return -1;

* O(n)

* @param x

* <a href='http://www.jobbole.com/members/wx1409399284'>@return</a>

*/

public int search(int x) {

for (int i = 0; i < size; i++)

if (nums[i] == x)

return i;

return -1;

}

/**

* return but does not remove the root of heap.

* O(1)

* <a href='http://www.jobbole.com/members/wx1409399284'>@return</a>

*/

public int peek() {

rangeCheck(0);

return nums[0];

}

private void siftUp(int i) {

int key = nums[i];

for (; i > 0;) {

int p = (i - 1) >>> 1;

if (nums[p] <= key)

break;

nums[i] = nums[p];

i = p;

}

nums[i] = key;

}

private void siftDown(int i) {

int key = nums[i];

for (;i < size / 2;) {

int child = (i << 1) + 1;

if (child + 1 < size && nums[child] > nums[child+1])

child++;

if (key <= nums[child])

break;

nums[i] = nums[child];

i = child;

}

nums[i] = key;

}

private void rangeCheck(int i) {

if (!(0 <= i && i < size))

throw new RuntimeException("Index is out of boundary");

}

private void expandSpace() {

this.nums = Arrays.copyOf(this.nums, size * 2);

}

<a href='http://www.jobbole.com/members/wx610506454'>@Override</a>

public String toString() {

// TODO Auto-generated method stub

StringBuilder sb = new StringBuilder();

sb.append("[");

for (int i = 0; i < size; i++)

sb.append(String.format((i != 0 ? ", " : "") + "%d", nums[i]));

sb.append("]\n");

return sb.toString();

}

}

2.堆的应用:堆排序

运用堆的性质,我们可以得到一种常用的、稳定的、高效的排序算法————堆排序。堆排序的时间复杂度为O(n*log(n)),空间复杂度为O(1),堆排序的思想是:
对于含有
n个元素的无序数组nums, 构建一个堆(这里是小顶堆)heap,然后执行extractMin得到最小的元素,这样执行n次得到序列就是排序好的序列。
如果是降序排列则是小顶堆;否则利用大顶堆。

Trick

由于extractMin执行完毕后,最后一个元素last已经被移动到了root,因此可以将extractMin返回的元素放置于最后,这样可以得到sort in place的堆排序算法。

具体操作如下:

int[] n = new int[] {1,9,5,6,8,3,1,2,5,9,86};

Heap h = new Heap(n);

for (int i = 0; i < n.length; i++)

n[n.length-1-i] = h.extractMin();


当然,如果不使用前面定义的heap,则可以手动写堆排序,由于堆排序设计到建堆和extractMin, 两个操作都公共依赖于siftDown函数,因此我们只需要实现siftDown即可。(trick:由于建堆操作可以采用siftUp或者siftDown,而extractMin是需要siftDown操作,因此取公共部分,则采用siftDown建堆)。

这里便于和前面统一,采用小顶堆数组进行降序排列。

public void heapSort(int[] nums) {

int size = nums.length;

buildMinHeap(nums);

while (size != 0) {

// 交换堆顶和最后一个元素

int tmp = nums[0];

nums[0] = nums[size - 1];

nums[size - 1] = tmp;

size--;

siftDown(nums, 0, size);

}

}

 

// 建立小顶堆

private void buildMinHeap(int[] nums) {

int size = nums.length;

for (int j = size / 2 - 1; j >= 0; j--)

siftDown(nums, j, size);

}

 

private void siftDown(int[] nums, int i, int newSize) {

int key = nums[i];

while (i < newSize >>> 1) {

int leftChild = (i << 1) + 1;

int rightChild = leftChild + 1;

// 最小的孩子,比最小的孩子还小

int min = (rightChild >= newSize || nums[leftChild] < nums[rightChild]) ? leftChild : rightChild;

if (key <= nums[min])

break;

nums[i] = nums[min];

i = min;

}

nums[i] = key;

}

3.堆的应用:优先队列

优先队列是一种抽象的数据类型,它和堆的关系类似于,List和数组、链表的关系一样;我们常常使用堆来实现优先队列,因此很多时候堆和优先队列都很相似,它们只是概念上的区分。
优先队列的应用场景十分的广泛:
常见的应用有:

  • Dijkstra’s algorithm(单源最短路问题中需要在邻接表中找到某一点的最短邻接边,这可以将复杂度降低。)

  • Huffman coding(贪心算法的一个典型例子,采用优先队列构建最优的前缀编码树(prefixEncodeTree))

  • Prim’s algorithm for minimum spanning tree

  • Best-first search algorithms

这里简单介绍上述应用之一:Huffman coding

Huffman编码是一种变长的编码方案,对于每一个字符,所对应的二进制位串的长度是不一致的,但是遵守如下原则:

  • 出现频率高的字符的二进制位串的长度小

  • 不存在一个字符c的二进制位串s是除c外任意字符的二进制位串的前缀

遵守这样原则的Huffman编码属于变长编码,可以无损的压缩数据,压缩后通常可以节省20%-90%的空间,具体压缩率依赖于数据的固有结构。

Huffman编码的实现就是要找到满足这两种原则的 字符-二进制位串 对照关系,即找到最优前缀码的编码方案(前缀码:没有任何字符编码后的二进制位串是其他字符编码后位串的前缀)。
这里我们需要用到二叉树来表达最优前缀码,该树称为最优前缀码树
一棵最优前缀码树看起来像这样:

堆和堆的应用:堆排序和优先队列

算法思想:用一个属性为freqeunce关键字的最小优先队列Q,将当前最小的两个元素x,y合并得到一个新元素z(z.frequence = x.freqeunce + y.frequence),
然后插入到优先队列中Q中,这样执行
n-1次合并后,得到一棵最优前缀码树(这里不讨论算法的证明)。

一个常见的构建流程如下:

树中指向某个节点左孩子的边上表示位0,指向右孩子的边上的表示位1,这样遍历一棵最优前缀码树就可以得到对照表。

import java.util.Comparator;

import java.util.HashMap;

import java.util.Map;

import java.util.PriorityQueue;

 

/**

*

*                            root

*                            /   \

*                    --------- ----------

*                    |c:freq | | c:freq |

*                    --------- ----------

*

*

*/

public class HuffmanEncodeDemo {

 

public static void main(String[] args) {

// TODO Auto-generated method stub

Node[] n = new Node[6];

float[] freq = new float[] { 9, 5, 45, 13, 16, 12 };

char[] chs = new char[] { 'e', 'f', 'a', 'b', 'd', 'c' };

HuffmanEncodeDemo demo = new HuffmanEncodeDemo();

Node root = demo.buildPrefixEncodeTree(n, freq, chs);

Map<Character, String> collector = new HashMap<>();

StringBuilder sb = new StringBuilder();

demo.tranversalPrefixEncodeTree(root, collector, sb);

System.out.println(collector);

String s = "abcabcefefefeabcdbebfbebfbabc";

StringBuilder sb1 = new StringBuilder();

for (char c : s.toCharArray()) {

sb1.append(collector.get(c));

}

System.out.println(sb1.toString());

}

 

public Node buildPrefixEncodeTree(Node[] n, float[] freq, char[] chs) {

PriorityQueue<Node> pQ = new PriorityQueue<>(new Comparator<Node>() {

public int compare(Node o1, Node o2) {

return o1.item.freq > o2.item.freq ? 1 : o1.item.freq == o2.item.freq ? 0 : -1;

};

});

Node e = null;

for (int i = 0; i < chs.length; i++) {

n[i] = e = new Node(null, null, new Item(chs[i], freq[i]));

pQ.add(e);

}

 

for (int i = 0; i < n.length - 1; i++) {

Node x = pQ.poll(), y = pQ.poll();

Node z = new Node(x, y, new Item('$', x.item.freq + y.item.freq));

pQ.add(z);

}

return pQ.poll();

}

/**

* tranversal  

* @param root

* @param collector

* @param sb

*/

public void tranversalPrefixEncodeTree(Node root, Map<Character, String> collector, StringBuilder sb) {

// leaf node

if (root.left == null && root.right == null) {

collector.put(root.item.c, sb.toString());

return;

}

Node left = root.left, right = root.right;

tranversalPrefixEncodeTree(left, collector, sb.append(0));

sb.delete(sb.length() - 1, sb.length());

tranversalPrefixEncodeTree(right, collector, sb.append(1));

sb.delete(sb.length() - 1, sb.length());

}

}

 

class Node {

public Node left, right;

public Item item;

 

public Node(Node left, Node right, Item item) {

super();

this.left = left;

this.right = right;

this.item = item;

}

 

}

 

class Item {

public char c;

public float freq;

 

public Item(char c, float freq) {

super();

this.c = c;

this.freq = freq;

}

}


输出如下:

{a=0, b=101, c=100, d=111, e=1101, f=1100}

010110001011001101110011011100110111001101010110011110111011011100101110110111001010101100

4 堆的应用:海量实数中(一亿级别以上)找到TopK(一万级别以下)的数集合。

  • A:通常遇到找一个集合中的TopK问题,想到的便是排序,因为常见的排序算法例如快排算是比较快了,然后再取出K个TopK数,时间复杂度为O(nlogn),当n很大的时候这个时间复杂度还是很大的;

  • B:另一种思路就是打擂台的方式,每个元素与K个待选元素比较一次,时间复杂度很高:O(k*n),此方案明显逊色于前者。

对于一亿数据来说,A方案大约是26.575424*n

  • C:由于我们只需要TopK,因此不需要对所有数据进行排序,可以利用堆得思想,维护一个大小为K的小顶堆,然后依次遍历每个元素e, 若元素e大于堆顶元素root,则删除root,将e放在堆顶,然后调整,时间复杂度为logK;若小于或等于,则考察下一个元素。这样遍历一遍后,最小堆里面保留的数就是我们要找的topK,整体时间复杂度为O(k+n*logk)约等于O(n*logk),大约是13.287712*n(由于k与n数量级差太多),这样时间复杂度下降了约一半。

A、B、C三个方案中,C通常是优于B的,因为logK通常是小于k的,当Kn的数量级相差越大,这种方式越有效。

以下为具体操作:

import java.io.File;

import java.io.FileNotFoundException;

import java.io.PrintWriter;

import java.io.UnsupportedEncodingException;

import java.util.Arrays;

import java.util.Scanner;

import java.util.Set;

import java.util.TreeSet;

public class TopKNumbersInMassiveNumbersDemo {

 

public static void main(String[] args) {

// TODO Auto-generated method stub

int[] topK = new int[]{50001,50002,50003,50004,50005};

genData(1000 * 1000 * 1000, 500, topK);

long t = System.currentTimeMillis();

findTopK(topK.length);

System.out.println(String.format("cost:%fs", (System.currentTimeMillis() - t) * 1.0 / 1000));

}

public static void genData(int N, int maxRandomNumer, int[] topK) {

File f = new File("data.txt");

int k = topK.length;

Set<Integer> index = new TreeSet<>();

for (;;) {

index.add((int)(Math.random() * N));

if (index.size() == k)

break;

}

System.out.println(index);

int j = 0;

try {

PrintWriter pW = new PrintWriter(f, "UTF-8");

for (int i = 0; i < N; i++)

if(!index.contains(i))

pW.println((int)(Math.random() * maxRandomNumer));

else

pW.println(topK[j++]);

pW.flush();

} catch (FileNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (UnsupportedEncodingException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

public static void findTopK(int k) {

int[] nums = new int[k];

//read

File f = new File("data.txt");

try {

Scanner scanner = new Scanner(f);

for (int j = 0;j < k; j++)

nums[j] = scanner.nextInt();

heapify(nums);

//core

while (scanner.hasNextInt()) {

int a = scanner.nextInt();

if (a <= nums[0])

continue;

else {

nums[0] = a;

siftDown(0, k, nums);

}

}

System.out.println(Arrays.toString(nums));

} catch (FileNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

//O(n), minimal heap

public static void heapify(int[] nums) {

int size = nums.length;

for (int j = (size - 1) >> 1; j >= 0; j--)

siftDown(j, size, nums);

}

private static void siftDown(int i, int n, int[] nums) {

int key = nums[i];

for (;i < (n >>> 1);) {

int child = (i << 1) + 1;

if (child + 1 < n && nums[child] > nums[child+1])

child++;

if (key <= nums[child])

break;

nums[i] = nums[child];

i = child;

}

nums[i] = key;

}

}


ps:大致测试了一下,10亿个数中找到top5需要140秒左右,应该是很快了。

5 总结

  • 堆是基于树的满足一定约束的重要数据结构,存在许多变体例如二叉堆、二项式堆、斐波那契堆(很高效)等。

  • 堆的几个基本操作都依赖于两个重要的函数siftUpsiftDown,堆的insert通常是在堆尾插入新元素并siftUp调整堆,而extractMin是在
    删除堆顶元素,然后将最后一个元素放置堆顶并调用
    siftDown调整堆。

  • 二叉堆是常用的一种堆,其是一棵二叉树;由于二叉树良好的性质,因此常常采用数组来存储堆。
    堆得基本操作的时间复杂度如下表所示:

heapify insert peek extractMin delete(i)
O(n) O(logn) O(1) O(logn) O(logn)
  • 二叉堆通常被用来实现堆排序算法,堆排序可以sort in place,堆排序的时间复杂度的上界是O(nlogn),是一种很优秀的排序算法。由于存在相同键值的两个元素处于两棵子树中,而两个元素的顺序可能会在后续的堆调整中发生改变,因此堆排序不是稳定的。降序排序需要建立小顶堆,升序排序需要建立大顶堆。

  • 堆是实现抽象数据类型优先队列的一种方式,优先队列有很广泛的应用,例如Huffman编码中使用优先队列利用贪心算法构建最优前缀编码树。

  • 堆的另一个应用就是在海量数据中找到TopK个数,思想是维护一个大小为K的二叉堆,然后不断地比较堆顶元素,判断是否需要执行替换对顶元素的操作,采用
    此方法的时间复杂度为
    n*logk,当kn的数量级差距很大的时候,这种方式是很有效的方法。

6 references

[1] https://en.wikipedia.org/wiki/Heap_(data_structure))

[2] https://en.wikipedia.org/wiki/Heapsort

[3] https://en.wikipedia.org/wiki/Priority_queue

[4] https://www.cnblogs.com/swiftma/p/6006395.html

[5] Thomas H.Cormen, Charles E.Leiserson, Ronald L.Rivest, Clifford Stein.算法导论[M].北京:机械工业出版社,2015:245-249

[6] Jon Bentley.编程珠玑[M].北京:人民邮电出版社,2015:161-174


觉得本文有帮助?请分享给更多人

关注「算法爱好者」,修炼编程内功

以上是关于堆和堆排序的主要内容,如果未能解决你的问题,请参考以下文章

面试必知必会|理解堆和堆排序

数据结构 | 堆和堆排序

堆和堆排序

关于堆和堆排序

PHP堆和堆排序

堆和堆的应用:堆排序和优先队列