混沌动力学行为研究-分叉图
Posted studyer_domi
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了混沌动力学行为研究-分叉图相关的知识,希望对你有一定的参考价值。
混沌动力学行为研究的程序说明
1.分岔图:
一个耦合发电机系统:
耦合系统函数:
function dx=ouhe1(t,x)
dx(1,1)=-x(4)*x(1)+x(2)*(x(3)+x(5));
dx(2,1)=-x(4)*x(2)+x(1)*(x(3)-x(5));
dx(3,1)=x(3)-x(1)*x(2);
dx(4,1)=0;
dx(5,1)=0;
分岔图程序:
clear;
clc;
Z=[];
for a=linspace(0.5,10.5,500); %舍弃前面迭带的结果,用后面的结果画图:即0.5-10.5分为500点
[T,Y]=ode45('ouhe1',1,[1;1;1;2;a]);
[T,Y]=ode45('ouhe1',20,Y(length(Y),:));
Y(:,1)=Y(:,2)-Y(:,1);
for k=2:length(Y)
f=k-1;
if Y(k,1)<0
if Y(f,1)>0
y=Y(k,2)-Y(k,1)*(Y(f,2)-Y(k,2))/(Y(f,1)-Y(k,1));
Z=[Z a+abs(y)*i];
end
else
if Y(f,1)<0
y=Y(k,2)-Y(k,1)*(Y(f,2)-Y(k,2))/(Y(f,1)-Y(k,1));
Z=[Z a+abs(y)*i];
end
end
end
end
plot(Z,'.','markersize',1);
title('ouhe映射分岔图');
xlabel('a'),ylabel('|y|')
2.功率谱:对上面耦合系统的功率谱的研究
clear all
x=zeros(1,10001);y=zeros(1,10001);z=zeros(1,10001);%数组置零
x(1)=1;y(1)=1;z(1)=1;
h=0.001;k=10000;a=3;u=2;
for i=1:k
x(i+1)=x(i)+h*(-u*x(i)+y(i)*(z(i)+a)); %欧拉离散
y(i+1)=y(i)+h*(-u*y(i)+x(i)*(z(i)-a));
z(i+1)=z(i)+h*(z(i)-x(i)*y(i));
end
X1=fft(z,16384); %对x做傅里叶变换,取8192个点
p=X1.*conj(X1)/16384; %求x的模及功率谱密度,单位:dB 同样可求y或z
c=100*[0:8191]/16384; %取双边,也可取单边c=[0:4095]/0.8192;
%title('题目') %顶端题目
plot(c,log10(p(1:8192)),'k')%画出左半部分
axis([0 4 -3 6]); %限制横、纵坐标范围
%plot(c,abs(X1(1:4096))) 有时候也可用x的绝对值表示功率大小,没求对数
xlabel('\\itf\\rm/HZ','fontsize',18,'fontName','times new Roman','fontweight','bold','color','k'); %加横坐标,\\it表倾斜,\\rm表复正
ylabel('power spectrum/dB','fontsize',18,'fontName','times new Roman','fontweight','bold','color','k'); %纵坐标标示
3.最大李雅谱指数程序:仍对上述耦合系统
clear; %与ouhe系统的分岔图(fotran)符合的很好
clc;
d0=1e-8;
le=0;
lsum=0;
x=1;
y=1;
z=1;
x1=1;
y1=1;
z1=1+d0;
for i=1:500
[T1,Y1]=ode45('ouhe1',[0,1],[x;y;z;4.05;7.0]);
[T2,Y2]=ode45('ouhe1',[0,1],[x1;y1;z1;4.05;7.0]);
n1=length(Y1);
n2=length(Y2);
x=Y1(n1,1);
y=Y1(n1,2);
z=Y1(n1,3);
x1=Y2(n2,1);
y1=Y2(n2,2);
z1=Y2(n2,3);
d1=sqrt((x-x1)^2+(y-y1)^2+(z-z1)^2);
x1=x+(d0/d1)*(x1-x);
y1=y+(d0/d1)*(y1-y);
z1=z+(d0/d1)*(z1-z);
if i>100
lsum=lsum+log(d1/d0);
end
end
le=lsum/(i-100)
最大李雅谱指数谱程序:仍对上述耦合系统
clear; %可调参数区间和步长,如a的第5和36行
clc;
LE1=[];
d0=1e-8;
for a=linspace(0.5,10.5,300);
le=0;
lsum=0;
x=1;
y=1;
z=1;
x1=1;
y1=1;
z1=1+d0;
for i=1:150
[T1,Y1]=ode45('ouhe1',[0,1],[x;y;z;2;a]);
[T2,Y2]=ode45('ouhe1',[0,1],[x1;y1;z1;2;a]);
n1=length(Y1);
n2=length(Y2);
x=Y1(n1,1);
y=Y1(n1,2);
z=Y1(n1,3);
x1=Y2(n2,1);
y1=Y2(n2,2);
z1=Y2(n2,3);
d1=sqrt((x-x1)^2+(y-y1)^2+(z-z1)^2);
x1=x+(d0/d1)*(x1-x);
y1=y+(d0/d1)*(y1-y);
z1=z+(d0/d1)*(z1-z);
if i>50
lsum=lsum+log(d1/d0);
end
end
le=lsum/(i-50);
LE1=[LE1 le];
end
a=linspace(0.5,10.5,300);
plot(a,LE1,'-');
title('largest Lyapunov exponents of ouhe1');
xlabel('parameter a'),ylabel('largest Lyapunov exponents');
grid
双参数空间的最大李雅谱指数谱程序:仍对以上耦合系统
clear; %可调参数区间和步长
clc;
global u a
N1=linspace(0,0,200);
N2=linspace(0,0,400);
for I=1:200
u=1.5+I*0.025;
d0=1e-8;
for L=1:400
a=0.5+L*0.025;
le=0;
lsum=0;
x=1;
y=1;
z=1;
x1=1;
y1=1;
z1=1+d0;
for i=1:150
[T1,Y1]=ode45('ouhe1',[0,1],[x;y;z;u;a]);
[T2,Y2]=ode45('ouhe1',[0,1],[x1;y1;z1;u;a]);
n1=length(Y1);
n2=length(Y2);
x=Y1(n1,1);
y=Y1(n1,2);
z=Y1(n1,3);
x1=Y2(n2,1);
y1=Y2(n2,2);
z1=Y2(n2,3);
d1=sqrt((x-x1)^2+(y-y1)^2+(z-z1)^2);
x1=x+(d0/d1)*(x1-x);
y1=y+(d0/d1)*(y1-y);
z1=z+(d0/d1)*(z1-z);
if i>50
lsum=lsum+log(d1/d0);
end
end
le=lsum/(i-50);
LE1(I,L)=le;
N2(L)=a;
end
N1(I)=u;
end
[X,Y]=meshgrid(N1,N2);
Z=LE1;
pcolor(X,Y,Z); %画伪彩图
%colormap jet,shading interp %连续变化的变异饱和色图,表面画伪彩图
%contourf(X,Y,Z)%画等高线
title('largest Lyapunov exponents of ouhe1')
xlabel('parameter \\itu')
ylabel('parameter \\ita')
zlabel('最大李雅普指数\\delta','FontSize',12)
4.李雅谱指数程序:仍对以上耦合系统
clear;
clc;
x=1;
y=1;
z=1;
h=0.003;
a=3.5;u=2;
V=eye(3);
S=V;
b1=0;
k=50000;
for i=1:k
x1=x+h*(-u*x+y*(z+a));
y1=y+h*(-u*y+x*(z-a));
z1=z+h*(z-x*y);
x=x1;y=y1;z=z1;
J=[-u a+z y
z-a -u x
-y -x 1];
J=eye(3)+h*J;
B=J*V*S;
[V,S,U]=svd(B);
a_max=max(diag(S));
S=(1/a_max)*S;
b1=b1+log(a_max);
end
Lyapunov=(log(diag(S))+b1)/(k*h)
李雅谱指数谱程序:仍对以上耦合系统
clear;%奇异值分解法计算ouhe系统的李雅普诺夫指数谱
clc;
Z1=[];
Z2=[];
Z3=[];
x=1;
y=1;
z=1;
h=0.002;
u=2;
%a=3;
k=10000;
for a=linspace(0.5,10.5,1000);
V=eye(3);
S=V;
b1=0;
lp=0;
for i=1:k
x1=x+h*(-u*x+y*(z+a));
y1=y+h*(-u*y+x*(z-a));
z1=z+h*(z-x*y);
x=x1;y=y1;z=z1;
J=[-u a+z y
z-a -u x
-y -x 1];
J=eye(3)+h*J;
B=J*V*S;
[V,S,U]=svd(B);
a_max=max(diag(S));
S=(1/a_max)*S;
b1=b1+log(a_max);
end
lp=(log(diag(S))+b1)/(k*h);
Z1=[Z1 lp(1)];
Z2=[Z2 lp(2)];
Z3=[Z3 lp(3)];
end
a=linspace(0.5,10.5,1000);
plot(a,Z1,'-',a,Z2,'-',a,Z3,'-');
title('Lyapunov exponents of ouhe');
xlabel('parameter a'),ylabel('lyapunov exponents');
grid on
6.三维、二维以及时间序列图:
耦合系统的函数程序:
function dx=ouhe(t,x)
dx=zeros(3,1);
a=3;u=2;
dx(1)=-u*x(1)+x(2)*(x(3)+a);
dx(2)=-u*x(2)+x(1)*(x(3)-a);
dx(3)=x(3)-x(1)*x(2);
图程序:
clc;
clear;
[t,x]=ode45('ouhe',[0 1000],[1 -1 1]);
subplot(2,2,1); plot(x(:,1),'k','markersize',0.5);
xlabel('t/ms','fontsize',12,'fontName','times new Roman','fontweight','bold','color','k');
ylabel('x','fontsize',12,'fontName','times new Roman','fontweight','bold','color','k');
subplot(2,2,2); plot(x(:,2),'k','markersize',0.5);
xlabel('t/ms','fontsize',12,'fontName','times new Roman','fontweight','bold','color','k');
ylabel('y','fontsize',12,'fontName','times new Roman','fontweight','bold','color','k');
subplot(2,2,3); plot(x(:,3),'k','markersize',0.5);
xlabel('t/ms','fontsize',12,'fontName','times new Roman','fontweight','bold','color','k');
ylabel('z','fontsize',12,'fontName','times new Roman','fontweight','bold','color','k');
subplot(2,2,4); plot3(x(:,1),x(:,2),x(:,3),'k','markersize',0.5);grid on;
xlabel('x','fontsize',12,'fontName','times new Roman','fontweight','bold','color','k');
ylabel('y','fontsize',12,'fontName','times new Roman','fontweight','bold','color','k');
zlabel('z','fontsize',12,'fontName','times new Roman','fontweight','bold','color','k');
figure(2);plot3(x(:,1),x(:,2),x(:,3),'k','markersize',0.5);grid on;
xlabel('\\itx\\rm_1','fontsize',20,'fontName','times new Roman','fontweight','bold','color','k');
ylabel('\\itx\\rm_2','fontsize',20,'fontName','times new Roman','fontweight','bold','color','k');
zlabel('\\itx\\rm_3','fontsize',20,'fontName','times new Roman','fontweight','bold','color','k');
取参数a=3:0.001:4,迭代初值x(0)=0.1,计算Logistic映射的Lyapunov指数,并做可视化呈现
clear all;
hold on
alpha0=3:0.001:4;
N=1000;
for j=1:length(alpha0
alpha=alpha0(j);
x0=0.1;%初始值
s=0;
for ii=1:N
df=alpha-2*alpha*x0;
s=s+log(abs(df));%lambda叠加
x0=alpha*x0*(1-x0);%x迭代
end
Lm(j)=s/N;% 指数
end
plot(alpha0,Lm,'r')
N维离散系统动力学Mapping的分岔图与李雅普诺夫指数计算
clear all;
clc
a=4;
b1=1;
b2=1;
d=0.5;
c1=1.08;
c2=1;
z=0.5;
m=0.25;
p=0.5;
T=0.1;
S=0.1;
k2=0.15;
N1 = 100;
N2 = 400;
k10 = 0:0.001:0.4;
f = zeros(N1+N2,length(k10));
f2 = zeros(N1+N2,length(k10));
for kk=1:length(k10)
x0=2.5;
y0=2.35;
k1=k10(kk)
L1=0;L2=0;
% s=zeros(2,1);
J1=eye(2);
for j = 1:N1+N2
x1=x0+ k1.*x0.*(a-2*b1.*x0+d.*y0+b1.*(c1+(1-m).*z-S));
y1=y0+ k2.*y0.*(a-2*b2.*y0+d.*x0+b2.*(c2-p.*m.*z+T));
f(j,kk) =x1;
f2(j,kk) =y1;
j1=1 + a*k1 + d*k1*y1 + b1*k1 *(c1 - S - 4*x1 + z - m*z);
j2=d*k1*x1;
j3=d*k2*y1;
j4=1 + a*k2 + d *k2 *x1 + b2 *k2 *(c2 + T - 4 *y1 - m *p* z);
x0=x1;y0=y1;
end
end
hold on
f = f(N1+1:end,:);
plot(k10,f,'b.','MarkerSize',1)
ylabel('Price');
hold on
f2 = f2(N1+1:end,:);
plot(k10,f2,'r.','MarkerSize',1)
xlabel('\\mu');
ylabel('Price');
% plot(k10,Lm2,'r','linewidth',0.5)
plot(k10,Lm1,'b')
line([0 0.4],[0 0])
=0 临界点
<0稳定 >0不稳定,分叉
以上是关于混沌动力学行为研究-分叉图的主要内容,如果未能解决你的问题,请参考以下文章