R语言使用xgboost构建回归模型:vtreat包为xgboost回归模型进行数据预处理(缺失值填充缺失值标识离散变量独热onehot编码)构建出生体重的xgboost模型回归模型
Posted Data+Science+Insight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言使用xgboost构建回归模型:vtreat包为xgboost回归模型进行数据预处理(缺失值填充缺失值标识离散变量独热onehot编码)构建出生体重的xgboost模型回归模型相关的知识,希望对你有一定的参考价值。
R语言使用xgboost构建回归模型:vtreat包为xgboost回归模型进行数据预处理(缺失值填充、缺失值标识、离散变量独热onehot编码)、构建出生体重的xgboost模型回归模型
目录
以上是关于R语言使用xgboost构建回归模型:vtreat包为xgboost回归模型进行数据预处理(缺失值填充缺失值标识离散变量独热onehot编码)构建出生体重的xgboost模型回归模型的主要内容,如果未能解决你的问题,请参考以下文章
R语言构建xgboost模型:使用xgboost模型训练tweedie回归模型,特征工程(dataframe转化到data.table独热编码缺失值删除DMatrix结构生成)
R语言使用caret包构建xgboost模型(xgbTree算法)构建回归模型通过method参数指定算法名称通过trainControl函数控制训练过程
R语言使用caret包构建xgboost模型(xgbDART算法使用的dropout思想)构建回归模型通过method参数指定算法名称通过trainControl函数控制训练过程
R语言实战应用精讲50篇(三十五)-R语言实现xgboost回归(附R语言代码)
R语言vtreat包的mkCrossFrameCExperiment函数交叉验证构建数据处理计划并进行模型训练通过显著性进行变量筛选(删除相关性较强的变量)构建多变量模型转化为分类模型模型评估